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Abstract 

Deep neural networks have achieved remarkable success in various 

domains by effectively learning feature representations. In this paper, 

we propose a novel approach to enhance feature learning in deep neural 

networks by leveraging a multi-class pretraining and fine-tuning 

strategy. Our key idea is to train the base model on a larger number of 

classes, allowing it to learn more generalized feature vectors from a 

diverse set of data. By exposing the model to a broader range of visual 

patterns and concepts, we aim to facilitate the extraction of robust and 

discriminative features. Following the multi-class pre training phase, 

we perform fine-tuning on a smaller subset of classes relevant to the 

specific application at hand. This fine-tuning process enables the 

model to specialize and adapt its learned features to the target domain, 

enhancing its performance in specific tasks. Furthermore, we analyze 

the learned feature representations using visualization techniques and 

provide insights into how the pretraining and fine-tuning stages 

contribute to feature enrichment and transferability. Overall, our 

proposed approach of training a base model on a larger number of 

classes followed by fine-tuning on a specific application's classes 

offers a practical and effective framework to enhance feature learning 

in deep neural networks. The experimental results demonstrate the 

potential for improved performance and generalization capabilities, 

making it a valuable technique for various real-world applications. 

Introduction 

DNNs have developed into extremely complex architectures over the 

last decade that can extract complex representations from vast amounts 

of data. These multi-layered networks are sufficiently advanced to 

capture hierarchical information, which makes them very useful for 

handling complicated jobs. One specialized class of DNNs, known as 

CNNs, has emerged as a game-changer in the domain of computer 

vision. CNNs are designed to process and analyze visual data, making 

them particularly effective for image-related tasks. In the last two 

years, deep convolutional networks have outperformed the state of the 

art in many visual recognition tasks, e.g. [15]. Their architecture 

incorporates convolutional layers that enable the network to 

automatically and adaptively learn spatial hierarchies of features. 

CNNs differ from traditional neural networks through the inclusion of 

convolutional layers. These layers convolve over input data using 

filters or kernels so that the network can recognize spatial 

dependencies and local patterns. Later pooling layers preserve 

important features while shrinking spatial dimensions [22]. CNNs 

excel in feature extraction, automatically learning hierarchical 

representations of visual elements. This property makes them well-

suited for tasks such as image recognition, object detection, and, 

particularly relevant to this paper, image segmentation. Image 

segmentation is very essential and critical to image processing and 

pattern recognition. Despite the successes of DNNs and CNNs, image 

segmentation presents unique challenges. Overcoming issues such as 

boundary ambiguity, occlusion, and variability in object appearance 

requires tailored solutions[12]. Semantic segmentation and instance 

segmentation are two advanced strategies that try to solve these 

problems. Applications for image segmentation can be found in a wide 

range of fields, from autonomous vehicles to medical imaging to tumor 

detection. The effectiveness of these applications is directly impacted 

by the accuracy and efficiency of segmentation algorithms. 

As per [7], Segmentation approaches are categorized into four classes: 

pixel based segmentation, area based segmentation, edge based 

segmentation and physics based segmentation. In this paper we focus 

on pixel based segmentation and how to increase the feature vector 

learning of image segmentation networks. Converting any required 

information into feature vectors is essential because machine learning 

models can only handle numerical values. Feature vectors are multi-

dimensional numerical values that represent features utilized by 

machine learning algorithms. An ordered list of the numerical 

characteristics of things seen is called a feature vector. It symbolizes 

input features for a prediction-making machine learning model. As 

mentioned in [9] It has been noted that convolutional kernels in a 

conventional CNN have a tendency to produce activation maps 

pertaining to specific object properties after training. Considering the 

nature of activations, segmentation masks of features particular to an 

object can be understood. Hence, this output activation matrix already 

has the key to creating requirement-specific segmentation. This CNN 

feature is used by the majority of image segmentation algorithms to 

build the segmentation masks that are needed to solve the problem.  

Our goal in this research is to improve the quality of the feature 

vectors, or activation matrix, that the image segmentation model 

learns. The first stage is to determine the cause of the activation matrix 

or polished feature vector’s learning constraint. We rigorously 

investigate, quantitatively assess, and conclude that the model cannot 

learn ideal feature vectors if there is data imbalance in our training 

datasets. As discussed in [16], class imbalance poses a challenge for 

developing unbiased, accurate predictive models. Specifically, poor 

generalization may result from image segmentation neural networks 

overfitting to foreground samples from small structures, which are 

frequently severely underrepresented in the training set. The figure 

3.1.1 gives a rough estimate of class imbalance that exists in our 

training dataset. The graph clearly shows that the obstruction class is 

n times larger than the other classes causing the model to overfit on 

some of these classes. A key contribution as represented in [16] is the  

However, we do not address the issue of data imbalance in this paper. 

By training the model on a variety of classes and transferring the 

significant weights from the trained model to a model whose output is 

fewer classes than the original one, as required by the application, we 

attempt to make the model learn the feature vectors more robustly. 

Through the process of transfer learning, which involves optimizing 

pre-trained models on massive datasets for particular tasks, CNN 

efficacy is further increased. This method reduces the requirement for 
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enormous volumes of annotated data and speeds up the creation of 

high-performing models. 

We conduct extensive experiments on various datasets and 

demonstrate that our approach improves feature learning and boosts 

the overall performance of image segmentation. 

2. Literature Review 

2.1 Convolutional Neural Network for image 

segmentation. 
Convolutional Neural Networks (CNNs) have made significant strides 

in image segmentation, a crucial problem in computer vision. The goal 

of this literature review is to present a thorough summary of research 

using CNNs for image segmentation applications. The overview looks 

at how CNN designs have changed over time, how they are used in 

different fields, and what advances and problems are motivating 

researchers in this area.  
LeNet-5 [37] laid the foundation for CNNs. Although initially 

designed for handwritten digit recognition, its convolutional and 

pooling layers became fundamental for later segmentation 

architectures. [24] U-Net revolutionized medical image segmentation. 

Its encoder-decoder architecture, with skip connections, allows precise 

localization and segmentation of structures in medical images. 

[19]FCN, proposed by Long et al. in 2015, extended CNNs for end-to-

end segmentation. FCNs introduced the concept of pixel-wise 

classification, enabling segmentation maps with dense predictions. 

The application of CNNs are progressing, especially in the fields of 

Medical Image Segmentation, Remote Sensing, Autonomous 

Vehicles, Natural Scene Segmentation, Industrial Inspection etc. As 

CNN architectures evolve, there is a need for dynamic visualization 

techniques that adapt to the increasing complexity of models. 

Exploring real-time and interactive visualization methods is an avenue 

for future research. 

2.2 Transfer Learning 
In the field of deep learning, transfer learning has become a key 

technique that offers a strong framework for using information from 

one domain to improve performance in another. This review of the 

literature is on the use of transfer learning, particularly on how it 

advances image segmentation tasks. [8]Pre-training a model on a 

source task and then modifying it for a target task constitutes transfer 

learning. The incentive is to apply the information gained from a 

related field to enhance performance on an entirely new, maybe data-

poor, or distinct task. Image segmentation faces challenges such as 

limited labeled data, class imbalance, and domain shifts. Transfer 

learning aims to mitigate these challenges by leveraging knowledge 

from well-labeled and diverse source domains. 
There are different ways to utilize and implement the transfer learning 

techniques such as  Feature Extraction and Fine-Tuning, Domain 

Adaptation Techniques: where  domain-specific normalization 

methods aim to align feature distributions across domains. 

2.3 Visualizing feature maps 
The visualization of feature vectors in Convolutional Neural Networks 

(CNNs) plays a crucial role in understanding the representations 

learned by these complex models. This literature review explores the 

methodologies, techniques, and applications of visualizing feature 

vectors in CNNs, with a particular focus on insights gained in the 

context of image segmentation. [32, 25]CNNs consist of layers that 

progressively extract hierarchical features from input data. Feature 

vectors represent these learned features, capturing both low-level and 

high-level visual information. [2, 3] explore the study of the feature 

vectors, kernels, analyzing the weights during the training 

cycle.  Kernels, known for their ability to implicitly represent high-

dimensional spaces, are employed to enhance the efficiency and 

effectiveness of feature vector operations. The primary objectives 

include selecting relevant features and projecting them onto a lower-

dimensional space. [25] explores methodologies for gaining insights 

into the internal mechanisms of DNNs. Techniques for analyzing 

activation patterns, feature representations, and model behavior are 

discussed, providing a foundation for understanding the learned 

representations. 

2.4 Challenges and Innovations 

 Data Imbalance: [11]Data class imbalance is a common challenge in 

image segmentation tasks, where certain classes may be 

underrepresented, leading to biased model training. It's still difficult 

to address imbalances in training data. Various methods have been 

suggested to address this problem, including class weighting, data 

augmentation, and customized loss functions.The review discusses 

how class imbalance can result in models favoring dominant classes, 

causing misclassification and poor segmentation of minority 

classes[16]. This understanding forms the basis for the need to 

address imbalance in segmentation datasets. There are different ways 

to tackle the imbalance problems, such as  

 Class weighting involves assigning different weights to 

classes during training to give more emphasis to 

underrepresented classes.  

 Resampling techniques, such as oversampling minority 

classes or undersampling majority classes, are discussed. 

  Pre-trained models on large datasets can be fine-tuned on 

imbalanced segmentation datasets, leveraging knowledge 

from diverse sources. 

3. Methodology 

We wanted an encoder-decoder architectural model for this 

hypothesis. [10]. Our architecture is a modified version of U-net [24]. 

Because the bottleneck in the architecture symbolizes or provides a 

complete conversion of the picture to the feature vector or activation 

matrix, it is particularly suitable for the hypothesis that we put forward. 

We can better comprehend the alterations brought about by the varied 

amount of training classes with the aid of this architecture. The model 

architecture in its simplified form is depicted in Figure 3.4.1. A 

contracting path (encoder) is followed by an expansive path (decoder) 

in the U-Net design. While the expansive path recovers spatial 

information, the contracting path captures context and abstract 

features. [35] There features are described in short below: 
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Contracting Path (Encoder): 

 To minimize spatial dimensions, use 

convolutional layers using max-pooling 

procedures. 

 With every stage, more abstract feature vectors are 

captured. 

 Bottleneck: 

 A bottleneck layer that retains high-level features. 

 Expansive Path (Decoder): 

 To improve spatial resolution, use up sampling 

techniques or transposed convolutions. 

 Skip connections that help with accurate 

localization by concatenating characteristics from 

the respective encoder layers. 

This study will not discuss the training dataset because it is proprietary. 

We use the SODA dataset and reference [3] to review and assess this 

work. These unlabeled images are utilized for validation. In this 

section we will describe the whole process of the experiment. For 

simplifying the process, we will divide it into the following steps. 

3.1. Identifying class imbalance 

 
Figure 3.1.1: The Figure explains the class imbalance in our training 

dataset. The graph shows the distribution of classes when we 

combine them as required by the application. 

 
Figure 3.1.2: The graph shows 11 levels of classes available in the 

dataset. It clearly denotes the class imbalance that occurs. 

We needed to know why there were additional false positives and false 

negatives in the model before we jumped to a solution. The class 

imbalance for obstacles is far greater than those of the other classes, as 

Figure 3.1.1 illustrates. Compared to other classes, the Obstruction 

class is over five times larger. This imbalance, which occurs at the 

instance level, will undoubtedly lead to some overfitting during model 

training. 
As stated in [16], we train our model using focus loss. In the event of 

a data imbalance, focal loss can assist in learning the feature vectors of 

a class with additional weighted loss. For the relevant classes, applying 

additional multiplication factors (such as gamma) can improve feature 

learning.  
From Figure 1 and 2, we can get an idea on the imbalance ratio of the 

input training dataset. 

3.2. Create benchmark model: Train the model with 

application specific dataset!  
We build our own benchmark model by training it on the application-

specific labeled dataset to gauge the progress of feature vector 

interpretation. We merge several classes into this one. The labels that 

were combined for this training experiment are displayed in Figure 3.2. 

We use the application-specific labeled dataset to train our model 

architecture and evaluate its performance to produce a benchmark 

model. After the training is complete, this can be compared to the 

newly created final model. We will use the name “benchmark model” 
for the current model throughout this paper. 

Figure 3.1 : Shows a basic chart of the steps that were carried out for this research 
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3.3. Train the model with all class labeled dataset. 

The goal of using all labels is to provide the model the opportunity to 

train on a very diverse dataset, which will produce a unique activation 

matrix for every labeled obstacle that can be identified in the pictures. 

We use a dataset (labels explained in Fig. 3.2) to train the model 

without combining the classes. We'll refer to this dataset as the "all 

class dataset" for simplicity's sake. To comprehend the state of the 

model, we also monitor the logit output from the model and visualize 

it. The output that the model predicts after being successfully trained 

is depicted in the figure 3.3.1. 

3.4. Fine-tune all class models to give application specific output. 

Figure 3.2 : The table on the left shows all 11 classes(11th : ignore) that are labeled and available. The table on the right shows combined labels 

which are required by application. 

Figure 3.3.1: The original image can be seen in the image on the left. The output of the detections superimposed on the original image is seen in the 

middle image. The confidence(output) in human segmentation at each pixel position is shown in the image. 
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Now that we have a model that has been trained on all classes, the 

weights and biases of the model layers have been learned in a way that 

produces a feature vector map that is detailed for 11 classes.  
The following steps define the most important steps of this research. 

 We replace the last layer of the model so that it can be 

adjusted for application specific output. 

 Then we freeze the encoder side of the model so that in back-

propagation, the encoder should not adapt to the application 

specific labeled feature maps. By doing so, we can achieve 

the state where the activation map presented is detailed, 

diverse for 11 classes. 

 Now, by using transfer-learning and training the model for a 

few more steps, we get a model with a decoder which has 

learnt to map the 11-class activation map to the application 

specific 4 classes. 
By doing so, we can get the encoder's feature map which relates to 

diverse labels, but the decoder can map it back to application specific 

features. This provides a diverse segmentation space threshold where 

the space for every label has widened and chance of overfit has 

reduced. Throughout the paper we will refer to this model as “Fine-

tuned model” 

4. Results 

4.1 Visualizing the output of the benchmark model and fine-tuned 

model.. 
The outcome of improving the model's feature vector knowledge is 

evident in the above figure. When compared to the benchmark model, 

the fine-tuned model exhibits comparatively higher accurate 

segmentations. 
It should be noted that after training the model on a variety of 

obstruction kinds and fine-tuning the decoder, we are achieving higher 

detection performance since the abundance of the obstruction class led 

to overfitting of the obstruction class. To provide readers with a more 

thorough overview of the enhancement, we have included additional 

specific images in the Appendix. 

4.2 Visualizing the kernels/weights. 
We have changed our code to capture the activation feature map after 

each layer, as shown in figure 4.2, to better comprehend the 

improvements in the feature vectors or activation maps.  

 
Figure 4.2.1: The images are a representation of the kernels (weights) 

in the first layer of our trained models. Left most images is the 

visualization of weights in the first layer of our benchmark model. 
Middle image represents the weights of the model initially trained on 

all classes. Rightmost image represents the weights of the fine-tuned 

model. 
It should be noted that the weights/kernel represented for the "Trained 

on all class" model and the "Fine-tuned model" are identical because 

we fixed the encoder side of the model's weights. We depict the feature 

vector maps for the first layer, as shown in the image, in order to 

develop an understanding at the feature level. 
The results are from the kernel that are achieved from the fine-tuned 

model. The same kernel can be found on the 4th row, 2nd column of 

the kernel matrix from figure above. 
This figure demonstrates how we map the output and assess feature 

vector improvements by contrasting the outcomes with the benchmark 

model. Since it will be confusing to compare these hidden layers 

visually, we have included the visualization of the intermediate 

activation maps in the appendix. In order to compare the outcomes, we 

will take the initial two layers and the last two layers. 

Figure 3.4.1: The image shows a rough estimate of the [24] U-net architecture that we modify and use for our experiment. The layers marked 

in yellow dashed box represent the encoder of the model and the remaining represents the decoder of the model. 
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Figure 4.1.1 : The images show output of the 2 models on a test dataset. Red denotes person detection. Green denoted 

Road, purple denotes obstruction. 
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Figure 4.1.2 : The image shows the original image(on the left) and the 

output feature map(on the right). The middle image shows the 

filter(kernel/weights) applied to get the output.  
.  
 
4.2 Analyzing quantitative outputs 

 

 
Figure 4.2.1:  shows the output from the 2 models, which have similar 

semantic detections, but the benchmark model has a disputed 

obstruction detection on the object highlighted on the right. 
 
The figure shows semantic output of an image from a construction site 

[36]. The comparison shows a similar output but has a dispersed 

detection on the obstacle on the right. Throughout the activation maps, 

we consider that region and visualize how the feature understanding of 

the object has improved. 

Figure 4.2.2 : Represents activation maps from the benchmark model. 
The explanation for the scattered obstacle detection in figure 4.2.2 is 

suggested by the activation maps in the image below. The image 

displays a few pixel locations that belong to the obstacle class's false 

positive pixel regions and are likewise activated.  
 

 
 Figure 4.2.3 : Represents activation maps from the fine tuned model. 
 
The figure's activation maps provide an indication of why the 

obstruction class's semantic segmentation has improved. The 

distinction between the benchmark model and an improved and 

enhanced feature vector learning is displayed in the two activation 

maps above. This provides credence to the idea that we can improve 

the feature vector learning of a segmentation model by first training it 

on a variety of labeled datasets and then applying transfer learning 

approaches. 
 
5. Summary and conclusion 
Improved Segmentation Performance: 
The fine-tuning of the decoder side resulted in improved image 

segmentation performance, particularly for the 4 classes relevant to the 

application of interest. The model exhibited better discrimination and 

accuracy in identifying and segmenting instances of these specific 

classes. 
Enhanced Feature Vectors: 
The feature vectors extracted from the model demonstrated 

improvement, indicating that the fine-tuning process allowed the 

network to learn more discriminative and contextually relevant 

features for the targeted application. 
Visualization of Feature Vectors: 
Feature vectors from various layers of the network were visualized to 

gain insights into the representation learned by the model. This 

visualization provided a deeper understanding of how the features 

evolved across different layers, highlighting the hierarchical and 

abstract nature of the learned representations. 
 
Transfer learning has a tremendous potential in the future since it saves 

training time and resources. Here we offer additional benefits of 

transfer learning such that features learnt can be tweaked and 

controlled in order to gain improved performance on image 

segmentations. The findings demonstrate that by first training the 

model on a variety of labels and then fine-tuning it according to the 

needs of the application, we can improve the feature maps of a model. 

This may contribute to enhancing the model's overall performance. 

The figure 4.2.2 & 4.2.3 clearly showed the difference in the 

performance and an improvement in feature mapping. 
 
6. Future Scope 
The ideology put forth can be applied not only to image segmentation 

but various other networks. This ideology might have even significant 

results if the class imbalance of the training dataset is reduced. 

Increasing the diversity in labels can increase the feature learning even 

further. 
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Appendix 

A. Implementation Detail 
This section contains additional implementation details for our experiment, including data validation, network architecture, and inference procedure. 
 
A.1 Validation dataset 
The dataset used for training has proprietary concerns hence , we did not discuss the training dataset. But for the validation of this experiment, we have 

used SODA open source dataset. Site Object Detection Dataset (SODA), which contains 15 object classes categorized by the worker, material, machine, 

and layout. >20,000 images were collected from multiple construction sites in different situations, weather conditions, and construction phases, covering 

different angles and perspectives.  
We have to resize the input images from the dataset since the training dataset is of different shape. The reason is: 

 Batch normalization normalizes the activations in a layer by adjusting and scaling them. It relies on the assumption that the input data has a 

consistent shape across the batch. If you pass images of different shapes, it might lead to errors during the batch normalization process. 

 To address this, you should ensure that the input images have the same dimensions. We have to either resize or crop the images before passing 

them through the network. 

 Max pooling is a down-sampling operation that reduces the spatial dimensions of the input data. Like batch normalization, max pooling 

layers also expect a consistent input shape. 

 If you provide images with different shapes, it can result in incompatible dimensions during the max pooling operation, potentially causing 

errors. 

 Similarly, you should preprocess your images to have consistent dimensions before passing them through the network. 

A.2 Network Architecture 
We have built our own custom version of U-net architecture but the ideology still remains the same. Figure 3.4.1 shows a simplified version of the U-

Net model. We have on purpose chosen this architecture because the bottleneck and skip connections give out feature vectors which are easy to record 

and use for understanding the functionality. Let's delve into the details of Figure 3.4.1, a simplified representation of your custom U-Net model: 
1. Encoder (Contracting Path): Convolutional Blocks: 

 The contracting path consists of a series of convolutional blocks, each followed by activation layers (commonly ReLU) for feature extraction. 

 These blocks reduce spatial dimensions while capturing hierarchical features. 

2. Bottleneck Layer: Central Bottleneck: 
 The bottleneck layer acts as the central hub, capturing the most abstract features from the encoder. 

 It maintains contextual information crucial for accurate feature representation. 

3. Decoder (Expansive Path): Transposed Convolutional Blocks: 
 The expansive path uses transposed convolutions to upsample feature maps. 

 Skip connections are concatenated to recover spatial details lost during downsampling. 

4. Skip Connections: Role in Feature Preservation: 
 Skip connections link corresponding layers between the encoder and decoder. 

 These connections enable the model to preserve fine-grained details and facilitate gradient flow during backpropagation. 

5. Output Layer: Segmentation Map: 
 The final layer produces a segmentation map representing the predicted class labels for each pixel in the input image. 

 We use softmax Activation functions for multiclass segmentation. 

6. Feature Vectors: Extraction from Bottleneck and Skip Connections: 
 The bottleneck and skip connections provide distinct feature vectors. 

 These vectors capture both low-level and high-level features, aiding in the interpretability of the model. 

7. Training Procedure: 
 The model is trained using a focal loss function for image segmentation tasks 

 During training, the network learns to adjust its parameters to minimize the discrepancy between predicted and ground truth segmentation 

maps. 

 
8. Inference Procedure: 

 During inference, input images are passed through the trained network to obtain segmentation predictions. 

 Feature vectors from the bottleneck and skip connections can be recorded and analyzed for insights into model decisions. 

 In order to capture the activation map for every layer, we had to modify the model code. We had to make sure the weights and kernel were 

being correctly returned and captured. 

A.3 Transfer learning 
The process of transfer learning in our case was not too complicated. We had to disable the learnable configuration of the encoder side of the model in 

order to freeze the training on these layers. We also had to remove the last layer of the all-class model since the output layer of this model was 10 nodes 

(classes) whereas the application required only 4 classes. We created a state_dict of the trained model and loaded it into a new model with all the right 

architecture for application specific requirements. Then with the application specific labeled dataset, we ran training for some epochs. 
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The purpose of the second iteration training is for the decoder to be able to map the 10 class feature vector to 4 class output or application specific 

output. 
 
B. Visualizing outputs 
 
We were returning every layer output in order to obtain the activation maps. In addition, we do iterations over every model kernel in order to incorporate 

all the refined and learned weights. Figure 4.2.2 & Figure 4.2.3 are just handpicked visualized feature maps since visualizing other intermediate layers 

will not make any sense. To give a broader aspect, we have attached a few examples where we can spot almost all the learned weights. These weights 

will be in the order of the forward propagation. For these examples, we have taken the fine-tuned model to infer and visualize the vector maps. 
 We can visualize the first layer of the network since the first layer adapts to learn information about the edges, color, shapes etc.  

 The figure 4.2.1 shows all the kernels that have developed after training the model. This layer is on the encoder side of the model. 

 We pick some distinct kernel from the figure that is highlighted and visualize the activation map of those kernels. 

 

 
Figure 1: The image on the top represents the original image. The small boxes in between are the kernels selected for visualization. The 3 images 

below are the visualization of activation maps from the respective kernels. 

 
From the figure, we can clearly see how the initial layer has been trained so as to learn specific edges, color based information and activate those 

specific instances. The leftmost kernel represents an orangish filter. The purpose of these filters is to highlight the features in the image which resonate 

with the kernels characteristics. In the leftmost case, from the activation map, we can see that all orangish, yellow features have been activated. Hence 

showing how the feature vector slowly builds to a complex array of numbers. 
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Figure 2: The above image describes the conversion of activation map and learning of features as the forward propagation progresses. The above layers 

are a part of the encoder side of the model. 

 
In the figure , we can clearly see the conversion of the feature vector into something that is visually confusing. Visually we can make sense of the initial 

layers but as the network goes deep, the feature vector becomes an array of multidimensional numbers. For this reason, we track the first layer of 

encoder and 2 last layers of decoder. 
 

 
Figure 3: The above image describes the decoder side of the model. The order of forward propagation is followed from left to right . The rightmost 

image is the final inference after getting the logits from the last layer. 

 
In the figure we can see how the feature vector slowly builds up the information and segmenting the pixels to their respective classes. Skip connection 

also plays an important role since it is responsible to pass on the initial important information. 
 


