
Page 1 of 12

10/19/2016

20XX-01-XXXX

Improving Feature Learning in Deep Neural Networks through Multi-Class
Pretraining and Fine-Tuning

Author: Mr. Sudhanshu Gupta, Johndeere

Abstract

Deep neural networks have achieved remarkable success in various

domains by effectively learning feature representations. In this paper,

we propose a novel approach to enhance feature learning in deep neural

networks by leveraging a multi-class pretraining and fine-tuning

strategy. Our key idea is to train the base model on a larger number of

classes, allowing it to learn more generalized feature vectors from a

diverse set of data. By exposing the model to a broader range of visual

patterns and concepts, we aim to facilitate the extraction of robust and

discriminative features. Following the multi-class pre training phase,

we perform fine-tuning on a smaller subset of classes relevant to the

specific application at hand. This fine-tuning process enables the

model to specialize and adapt its learned features to the target domain,

enhancing its performance in specific tasks. Furthermore, we analyze

the learned feature representations using visualization techniques and

provide insights into how the pretraining and fine-tuning stages

contribute to feature enrichment and transferability. Overall, our

proposed approach of training a base model on a larger number of

classes followed by fine-tuning on a specific application's classes

offers a practical and effective framework to enhance feature learning

in deep neural networks. The experimental results demonstrate the

potential for improved performance and generalization capabilities,

making it a valuable technique for various real-world applications.

Introduction

DNNs have developed into extremely complex architectures over the

last decade that can extract complex representations from vast amounts

of data. These multi-layered networks are sufficiently advanced to

capture hierarchical information, which makes them very useful for

handling complicated jobs. One specialized class of DNNs, known as

CNNs, has emerged as a game-changer in the domain of computer

vision. CNNs are designed to process and analyze visual data, making

them particularly effective for image-related tasks. In the last two

years, deep convolutional networks have outperformed the state of the

art in many visual recognition tasks, e.g. [15]. Their architecture

incorporates convolutional layers that enable the network to

automatically and adaptively learn spatial hierarchies of features.

CNNs differ from traditional neural networks through the inclusion of

convolutional layers. These layers convolve over input data using

filters or kernels so that the network can recognize spatial

dependencies and local patterns. Later pooling layers preserve

important features while shrinking spatial dimensions [22]. CNNs

excel in feature extraction, automatically learning hierarchical

representations of visual elements. This property makes them well-

suited for tasks such as image recognition, object detection, and,

particularly relevant to this paper, image segmentation. Image

segmentation is very essential and critical to image processing and

pattern recognition. Despite the successes of DNNs and CNNs, image

segmentation presents unique challenges. Overcoming issues such as

boundary ambiguity, occlusion, and variability in object appearance

requires tailored solutions[12]. Semantic segmentation and instance

segmentation are two advanced strategies that try to solve these

problems. Applications for image segmentation can be found in a wide

range of fields, from autonomous vehicles to medical imaging to tumor

detection. The effectiveness of these applications is directly impacted

by the accuracy and efficiency of segmentation algorithms.

As per [7], Segmentation approaches are categorized into four classes:

pixel based segmentation, area based segmentation, edge based

segmentation and physics based segmentation. In this paper we focus

on pixel based segmentation and how to increase the feature vector

learning of image segmentation networks. Converting any required

information into feature vectors is essential because machine learning

models can only handle numerical values. Feature vectors are multi-

dimensional numerical values that represent features utilized by

machine learning algorithms. An ordered list of the numerical

characteristics of things seen is called a feature vector. It symbolizes

input features for a prediction-making machine learning model. As

mentioned in [9] It has been noted that convolutional kernels in a

conventional CNN have a tendency to produce activation maps

pertaining to specific object properties after training. Considering the

nature of activations, segmentation masks of features particular to an

object can be understood. Hence, this output activation matrix already

has the key to creating requirement-specific segmentation. This CNN

feature is used by the majority of image segmentation algorithms to

build the segmentation masks that are needed to solve the problem.

Our goal in this research is to improve the quality of the feature

vectors, or activation matrix, that the image segmentation model

learns. The first stage is to determine the cause of the activation matrix

or polished feature vector’s learning constraint. We rigorously

investigate, quantitatively assess, and conclude that the model cannot

learn ideal feature vectors if there is data imbalance in our training

datasets. As discussed in [16], class imbalance poses a challenge for

developing unbiased, accurate predictive models. Specifically, poor

generalization may result from image segmentation neural networks

overfitting to foreground samples from small structures, which are

frequently severely underrepresented in the training set. The figure

3.1.1 gives a rough estimate of class imbalance that exists in our

training dataset. The graph clearly shows that the obstruction class is

n times larger than the other classes causing the model to overfit on

some of these classes. A key contribution as represented in [16] is the

However, we do not address the issue of data imbalance in this paper.

By training the model on a variety of classes and transferring the

significant weights from the trained model to a model whose output is

fewer classes than the original one, as required by the application, we

attempt to make the model learn the feature vectors more robustly.

Through the process of transfer learning, which involves optimizing

pre-trained models on massive datasets for particular tasks, CNN

efficacy is further increased. This method reduces the requirement for

Page 2 of 12

10/19/2016

enormous volumes of annotated data and speeds up the creation of

high-performing models.

We conduct extensive experiments on various datasets and

demonstrate that our approach improves feature learning and boosts

the overall performance of image segmentation.

2. Literature Review

2.1 Convolutional Neural Network for image

segmentation.
Convolutional Neural Networks (CNNs) have made significant strides

in image segmentation, a crucial problem in computer vision. The goal

of this literature review is to present a thorough summary of research

using CNNs for image segmentation applications. The overview looks

at how CNN designs have changed over time, how they are used in

different fields, and what advances and problems are motivating

researchers in this area.
LeNet-5 [37] laid the foundation for CNNs. Although initially

designed for handwritten digit recognition, its convolutional and

pooling layers became fundamental for later segmentation

architectures. [24] U-Net revolutionized medical image segmentation.

Its encoder-decoder architecture, with skip connections, allows precise

localization and segmentation of structures in medical images.

[19]FCN, proposed by Long et al. in 2015, extended CNNs for end-to-

end segmentation. FCNs introduced the concept of pixel-wise

classification, enabling segmentation maps with dense predictions.

The application of CNNs are progressing, especially in the fields of

Medical Image Segmentation, Remote Sensing, Autonomous

Vehicles, Natural Scene Segmentation, Industrial Inspection etc. As

CNN architectures evolve, there is a need for dynamic visualization

techniques that adapt to the increasing complexity of models.

Exploring real-time and interactive visualization methods is an avenue

for future research.

2.2 Transfer Learning
In the field of deep learning, transfer learning has become a key

technique that offers a strong framework for using information from

one domain to improve performance in another. This review of the

literature is on the use of transfer learning, particularly on how it

advances image segmentation tasks. [8]Pre-training a model on a

source task and then modifying it for a target task constitutes transfer

learning. The incentive is to apply the information gained from a

related field to enhance performance on an entirely new, maybe data-

poor, or distinct task. Image segmentation faces challenges such as

limited labeled data, class imbalance, and domain shifts. Transfer

learning aims to mitigate these challenges by leveraging knowledge

from well-labeled and diverse source domains.
There are different ways to utilize and implement the transfer learning

techniques such as Feature Extraction and Fine-Tuning, Domain

Adaptation Techniques: where domain-specific normalization

methods aim to align feature distributions across domains.

2.3 Visualizing feature maps
The visualization of feature vectors in Convolutional Neural Networks

(CNNs) plays a crucial role in understanding the representations

learned by these complex models. This literature review explores the

methodologies, techniques, and applications of visualizing feature

vectors in CNNs, with a particular focus on insights gained in the

context of image segmentation. [32, 25]CNNs consist of layers that

progressively extract hierarchical features from input data. Feature

vectors represent these learned features, capturing both low-level and

high-level visual information. [2, 3] explore the study of the feature

vectors, kernels, analyzing the weights during the training

cycle. Kernels, known for their ability to implicitly represent high-

dimensional spaces, are employed to enhance the efficiency and

effectiveness of feature vector operations. The primary objectives

include selecting relevant features and projecting them onto a lower-

dimensional space. [25] explores methodologies for gaining insights

into the internal mechanisms of DNNs. Techniques for analyzing

activation patterns, feature representations, and model behavior are

discussed, providing a foundation for understanding the learned

representations.

2.4 Challenges and Innovations

 Data Imbalance: [11]Data class imbalance is a common challenge in

image segmentation tasks, where certain classes may be

underrepresented, leading to biased model training. It's still difficult

to address imbalances in training data. Various methods have been

suggested to address this problem, including class weighting, data

augmentation, and customized loss functions.The review discusses

how class imbalance can result in models favoring dominant classes,

causing misclassification and poor segmentation of minority

classes[16]. This understanding forms the basis for the need to

address imbalance in segmentation datasets. There are different ways

to tackle the imbalance problems, such as

 Class weighting involves assigning different weights to

classes during training to give more emphasis to

underrepresented classes.

 Resampling techniques, such as oversampling minority

classes or undersampling majority classes, are discussed.

 Pre-trained models on large datasets can be fine-tuned on

imbalanced segmentation datasets, leveraging knowledge

from diverse sources.

3. Methodology

We wanted an encoder-decoder architectural model for this

hypothesis. [10]. Our architecture is a modified version of U-net [24].

Because the bottleneck in the architecture symbolizes or provides a

complete conversion of the picture to the feature vector or activation

matrix, it is particularly suitable for the hypothesis that we put forward.

We can better comprehend the alterations brought about by the varied

amount of training classes with the aid of this architecture. The model

architecture in its simplified form is depicted in Figure 3.4.1. A

contracting path (encoder) is followed by an expansive path (decoder)

in the U-Net design. While the expansive path recovers spatial

information, the contracting path captures context and abstract

features. [35] There features are described in short below:

Page 3 of 12

10/19/2016

Contracting Path (Encoder):

 To minimize spatial dimensions, use

convolutional layers using max-pooling

procedures.

 With every stage, more abstract feature vectors are

captured.

 Bottleneck:

 A bottleneck layer that retains high-level features.

 Expansive Path (Decoder):

 To improve spatial resolution, use up sampling

techniques or transposed convolutions.

 Skip connections that help with accurate

localization by concatenating characteristics from

the respective encoder layers.

This study will not discuss the training dataset because it is proprietary.

We use the SODA dataset and reference [3] to review and assess this

work. These unlabeled images are utilized for validation. In this

section we will describe the whole process of the experiment. For

simplifying the process, we will divide it into the following steps.

3.1. Identifying class imbalance

Figure 3.1.1: The Figure explains the class imbalance in our training

dataset. The graph shows the distribution of classes when we

combine them as required by the application.

Figure 3.1.2: The graph shows 11 levels of classes available in the

dataset. It clearly denotes the class imbalance that occurs.

We needed to know why there were additional false positives and false

negatives in the model before we jumped to a solution. The class

imbalance for obstacles is far greater than those of the other classes, as

Figure 3.1.1 illustrates. Compared to other classes, the Obstruction

class is over five times larger. This imbalance, which occurs at the

instance level, will undoubtedly lead to some overfitting during model

training.
As stated in [16], we train our model using focus loss. In the event of

a data imbalance, focal loss can assist in learning the feature vectors of

a class with additional weighted loss. For the relevant classes, applying

additional multiplication factors (such as gamma) can improve feature

learning.
From Figure 1 and 2, we can get an idea on the imbalance ratio of the

input training dataset.

3.2. Create benchmark model: Train the model with

application specific dataset!
We build our own benchmark model by training it on the application-

specific labeled dataset to gauge the progress of feature vector

interpretation. We merge several classes into this one. The labels that

were combined for this training experiment are displayed in Figure 3.2.

We use the application-specific labeled dataset to train our model

architecture and evaluate its performance to produce a benchmark

model. After the training is complete, this can be compared to the

newly created final model. We will use the name “benchmark model”
for the current model throughout this paper.

Figure 3.1 : Shows a basic chart of the steps that were carried out for this research

Page 4 of 12

10/19/2016

3.3. Train the model with all class labeled dataset.

The goal of using all labels is to provide the model the opportunity to

train on a very diverse dataset, which will produce a unique activation

matrix for every labeled obstacle that can be identified in the pictures.

We use a dataset (labels explained in Fig. 3.2) to train the model

without combining the classes. We'll refer to this dataset as the "all

class dataset" for simplicity's sake. To comprehend the state of the

model, we also monitor the logit output from the model and visualize

it. The output that the model predicts after being successfully trained

is depicted in the figure 3.3.1.

3.4. Fine-tune all class models to give application specific output.

Figure 3.2 : The table on the left shows all 11 classes(11th : ignore) that are labeled and available. The table on the right shows combined labels

which are required by application.

Figure 3.3.1: The original image can be seen in the image on the left. The output of the detections superimposed on the original image is seen in the

middle image. The confidence(output) in human segmentation at each pixel position is shown in the image.

Page 5 of 12

10/19/2016

Now that we have a model that has been trained on all classes, the

weights and biases of the model layers have been learned in a way that

produces a feature vector map that is detailed for 11 classes.
The following steps define the most important steps of this research.

 We replace the last layer of the model so that it can be

adjusted for application specific output.

 Then we freeze the encoder side of the model so that in back-

propagation, the encoder should not adapt to the application

specific labeled feature maps. By doing so, we can achieve

the state where the activation map presented is detailed,

diverse for 11 classes.

 Now, by using transfer-learning and training the model for a

few more steps, we get a model with a decoder which has

learnt to map the 11-class activation map to the application

specific 4 classes.
By doing so, we can get the encoder's feature map which relates to

diverse labels, but the decoder can map it back to application specific

features. This provides a diverse segmentation space threshold where

the space for every label has widened and chance of overfit has

reduced. Throughout the paper we will refer to this model as “Fine-

tuned model”

4. Results

4.1 Visualizing the output of the benchmark model and fine-tuned

model..
The outcome of improving the model's feature vector knowledge is

evident in the above figure. When compared to the benchmark model,

the fine-tuned model exhibits comparatively higher accurate

segmentations.
It should be noted that after training the model on a variety of

obstruction kinds and fine-tuning the decoder, we are achieving higher

detection performance since the abundance of the obstruction class led

to overfitting of the obstruction class. To provide readers with a more

thorough overview of the enhancement, we have included additional

specific images in the Appendix.

4.2 Visualizing the kernels/weights.
We have changed our code to capture the activation feature map after

each layer, as shown in figure 4.2, to better comprehend the

improvements in the feature vectors or activation maps.

Figure 4.2.1: The images are a representation of the kernels (weights)

in the first layer of our trained models. Left most images is the

visualization of weights in the first layer of our benchmark model.
Middle image represents the weights of the model initially trained on

all classes. Rightmost image represents the weights of the fine-tuned

model.
It should be noted that the weights/kernel represented for the "Trained

on all class" model and the "Fine-tuned model" are identical because

we fixed the encoder side of the model's weights. We depict the feature

vector maps for the first layer, as shown in the image, in order to

develop an understanding at the feature level.
The results are from the kernel that are achieved from the fine-tuned

model. The same kernel can be found on the 4th row, 2nd column of

the kernel matrix from figure above.
This figure demonstrates how we map the output and assess feature

vector improvements by contrasting the outcomes with the benchmark

model. Since it will be confusing to compare these hidden layers

visually, we have included the visualization of the intermediate

activation maps in the appendix. In order to compare the outcomes, we

will take the initial two layers and the last two layers.

Figure 3.4.1: The image shows a rough estimate of the [24] U-net architecture that we modify and use for our experiment. The layers marked

in yellow dashed box represent the encoder of the model and the remaining represents the decoder of the model.

Page 6 of 12

10/19/2016

Figure 4.1.1 : The images show output of the 2 models on a test dataset. Red denotes person detection. Green denoted

Road, purple denotes obstruction.

Page 7 of 12

10/19/2016

Figure 4.1.2 : The image shows the original image(on the left) and the

output feature map(on the right). The middle image shows the

filter(kernel/weights) applied to get the output.
.

4.2 Analyzing quantitative outputs

Figure 4.2.1: shows the output from the 2 models, which have similar

semantic detections, but the benchmark model has a disputed

obstruction detection on the object highlighted on the right.

The figure shows semantic output of an image from a construction site

[36]. The comparison shows a similar output but has a dispersed

detection on the obstacle on the right. Throughout the activation maps,

we consider that region and visualize how the feature understanding of

the object has improved.

Figure 4.2.2 : Represents activation maps from the benchmark model.
The explanation for the scattered obstacle detection in figure 4.2.2 is

suggested by the activation maps in the image below. The image

displays a few pixel locations that belong to the obstacle class's false

positive pixel regions and are likewise activated.

 Figure 4.2.3 : Represents activation maps from the fine tuned model.

The figure's activation maps provide an indication of why the

obstruction class's semantic segmentation has improved. The

distinction between the benchmark model and an improved and

enhanced feature vector learning is displayed in the two activation

maps above. This provides credence to the idea that we can improve

the feature vector learning of a segmentation model by first training it

on a variety of labeled datasets and then applying transfer learning

approaches.

5. Summary and conclusion
Improved Segmentation Performance:
The fine-tuning of the decoder side resulted in improved image

segmentation performance, particularly for the 4 classes relevant to the

application of interest. The model exhibited better discrimination and

accuracy in identifying and segmenting instances of these specific

classes.
Enhanced Feature Vectors:
The feature vectors extracted from the model demonstrated

improvement, indicating that the fine-tuning process allowed the

network to learn more discriminative and contextually relevant

features for the targeted application.
Visualization of Feature Vectors:
Feature vectors from various layers of the network were visualized to

gain insights into the representation learned by the model. This

visualization provided a deeper understanding of how the features

evolved across different layers, highlighting the hierarchical and

abstract nature of the learned representations.

Transfer learning has a tremendous potential in the future since it saves

training time and resources. Here we offer additional benefits of

transfer learning such that features learnt can be tweaked and

controlled in order to gain improved performance on image

segmentations. The findings demonstrate that by first training the

model on a variety of labels and then fine-tuning it according to the

needs of the application, we can improve the feature maps of a model.

This may contribute to enhancing the model's overall performance.

The figure 4.2.2 & 4.2.3 clearly showed the difference in the

performance and an improvement in feature mapping.

6. Future Scope
The ideology put forth can be applied not only to image segmentation

but various other networks. This ideology might have even significant

results if the class imbalance of the training dataset is reduced.

Increasing the diversity in labels can increase the feature learning even

further.

Page 8 of 12

10/19/2016

References

1. Agarwal, N. et al. (2021) “Transfer learning: survey and

classification,” in Tiwari, S. et al. (eds.) Smart innovations

in communication and computational sciences: proceedings

of ICSICCS 2020. Singapore: Springer Singapore

(Advances in intelligent systems and computing), pp. 145–

155. doi: 10.1007/978-981-15-5345-5_13.

2. Baudat, G. and Anouar, F. (2003) “Feature vector selection

and projection using kernels,” Neurocomputing, 55(1–2),

pp. 21–38. doi: 10.1016/S0925-2312(03)00429-6.

3. Bellet, A., Habrard, A. and Sebban, M. (2013) “A survey on

metric learning for feature vectors and structured data,”

arXiv preprint arXiv:1306.6709.

4. Buda, M., Maki, A. and Mazurowski, M. A. (2018) “A

systematic study of the class imbalance problem in

convolutional neural networks.,” Neural Networks, 106, pp.

249–259. doi: 10.1016/j.neunet.2018.07.011.

5. Chen, Z. et al. (2022) “Class Re-Activation Maps for

Weakly-Supervised Semantic Segmentation,” in 2022

IEEE/CVF Conference on Computer Vision and Pattern

Recognition (CVPR). 2022 IEEE/CVF Conference on

Computer Vision and Pattern Recognition (CVPR), IEEE,

pp. 959–968. doi: 10.1109/CVPR52688.2022.00104.

6. Deng, W. et al. (2019) “Brain Tumor Segmentation Based

on Improved Convolutional Neural Network in Combination

with Non-quantifiable Local Texture Feature.,” Journal of

medical systems, 43(6), p. 152. doi: 10.1007/s10916-019-

1289-2.

7. Deng, Y., Manjunath, B. S. and Shin, H. (1999) “Color

image segmentation,” Proceedings. 1999 IEEE ….

8. Furht, B., Villanustre, F. and Weiss, K. (2016) “Transfer

learning techniques,” Big data technologies ….

9. Ghosh, S. et al. (2019) “Understanding deep learning

techniques for image segmentation,” ACM Computing

Surveys, 52(4), pp. 1–35. doi: 10.1145/3329784.

10. Haralick, R. M. and Shapiro, L. G. (1985) “Image

segmentation techniques,” Computer Vision, Graphics, and

Image Processing, 29(1), pp. 100–132. doi: 10.1016/S0734-

189X(85)90153-7.

11. Johnson, J. M. and Khoshgoftaar, T. M. (2019) “Survey on

deep learning with class imbalance,” Journal of big data,

6(1), p. 27. doi: 10.1186/s40537-019-0192-5.

12. Kervadec, H. et al. (2021) “Boundary loss for highly

unbalanced segmentation.,” Medical Image Analysis, 67, p.

101851. doi: 10.1016/j.media.2020.101851.

13. Korsch, D., Bodesheim, P. and Denzler, J. (2021) “End-to-

End Learning of Fisher Vector Encodings for Part Features

in Fine-Grained Recognition,” in Bauckhage, C., Gall, J.,

and Schwing, A. (eds.) Pattern recognition: 43rd DAGM

german conference, DAGM GCPR 2021, bonn, germany,

september 28 – october 1, 2021, proceedings. Cham:

Springer International Publishing (Lecture notes in

computer science), pp. 142–158. doi: 10.1007/978-3-030-

92659-5_9.

14. Krähenbühl, P. and Koltun, V. (2011) “Efficient inference in

fully connected crfs with gaussian edge potentials,”

Advances in neural information ….

15. Krizhevsky, A., Sutskever, I. and Hinton, G. E. (2012)

“ImageNet classification with deep convolutional neural

networks,” Communications of the ACM, 60(6), pp. 84–90.

doi: 10.1145/3065386.

16. Li, Z., Kamnitsas, K. and Glocker, B. (2021) “Analyzing

overfitting under class imbalance in neural networks for

image segmentation.,” IEEE transactions on medical

imaging, 40(3), pp. 1065–1077. doi:

10.1109/TMI.2020.3046692.

17. Lin, T.-Y. et al. (2014) “Microsoft COCO: common objects

in context,” in Fleet, D. et al. (eds.) European Conference on

Computer Vision (ECCV). Cham: Springer International

Publishing (Lecture notes in computer science), pp. 740–

755. doi: 10.1007/978-3-319-10602-1_48.

18. Lin, T.-Y. et al. (2017) “RetinaNet - Focal loss for dense

object detection,” in 2017 IEEE International Conference on

Computer Vision (ICCV). 2017 IEEE International

Conference on Computer Vision (ICCV), IEEE, pp. 2999–

3007. doi: 10.1109/ICCV.2017.324.

19. Long, J., Shelhamer, E. and Darrell, T. (2015) “Fully

convolutional networks for semantic segmentation,” in 2015

IEEE Conference on Computer Vision and Pattern

Recognition (CVPR). 2015 IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), IEEE, pp. 3431–

3440. doi: 10.1109/CVPR.2015.7298965.

20. Minaee, S. et al. (2022) “Image segmentation using deep

learning: A survey.,” IEEE transactions on pattern analysis

and machine intelligence, 44(7), pp. 3523–3542. doi:

10.1109/TPAMI.2021.3059968.

21. Noh, H., Hong, S. and Han, B. (2015) “Learning

deconvolution network for semantic segmentation,” in 2015

IEEE International Conference on Computer Vision (ICCV).

2015 IEEE International Conference on Computer Vision

(ICCV), IEEE, pp. 1520–1528. doi:

10.1109/ICCV.2015.178.

22. Pan, T. et al. (2017) “Fully Convolutional Neural Networks

with Full-Scale-Features for Semantic Segmentation,”

Proceedings of the AAAI Conference on Artificial

Intelligence, 31(1). doi: 10.1609/aaai.v31i1.11217.

23. Pinheiro, P. O. and Collobert, R. (2015) “From image-level

to pixel-level labeling with Convolutional Networks,” in

2015 IEEE Conference on Computer Vision and Pattern

Recognition (CVPR). 2015 IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), IEEE, pp. 1713–

1721. doi: 10.1109/CVPR.2015.7298780.

Page 9 of 12

10/19/2016

24. Ronneberger, O., Fischer, P. and Brox, T. (2015) “U-Net:

Convolutional Networks for Biomedical Image

Segmentation,” in Navab, N. et al. (eds.) Medical Image

Computing and Computer-Assisted Intervention (MICCAI).

Cham: Springer International Publishing (Lecture notes in

computer science), pp. 234–241. doi: 10.1007/978-3-319-

24574-4_28.

25. Shahroudnejad, A. (2021) “A survey on understanding,

visualizations, and explanation of deep neural networks,”

arXiv preprint arXiv:2102.01792.

26. Simonyan, K. and Zisserman, A. (2014) “Very deep

convolutional networks for large-scale image recognition,”

arXiv preprint arXiv:1409.1556.

27. Suranaree University of Technology, Thailand et al. (2020)

“Improving the representation of CNN based features by

autoencoder for a task of construction material image

classification,” Journal of Advances in Information

Technology, 11(4), pp. 192–199. doi:

10.12720/jait.11.4.192-199.

28. Vinogradova, K., Dibrov, A. and Myers, G. (2020)

“Towards Interpretable Semantic Segmentation via

Gradient-Weighted Class Activation Mapping (Student

Abstract),” Proceedings of the AAAI Conference on

Artificial Intelligence, 34(10), pp. 13943–13944. doi:

10.1609/aaai.v34i10.7244.

29. Wang, D., Hu, G. and Lyu, C. (2021) “FRNet: an end-to-end

feature refinement neural network for medical image

segmentation,” The Visual computer, 37(5), pp. 1101–1112.

doi: 10.1007/s00371-020-01855-z.

30. Weiss, K., Khoshgoftaar, T. M. and Wang, D. (2016) “A

survey of transfer learning,” Journal of big data, 3(1), p. 9.

doi: 10.1186/s40537-016-0043-6.

31. Xia, X. and Kulis, B. (2017) “W-net: A deep model for fully

unsupervised image segmentation,” arXiv preprint

arXiv:1711.08506.

32. Zeiler, M. D. and Fergus, R. (2014) “Visualizing and

Understanding Convolutional Networks,” in Fleet, D. et al.

(eds.) Computer Vision – ECCV 2014. Cham: Springer

International Publishing (Lecture Notes in Computer

Science), pp. 818–833. doi: 10.1007/978-3-319-10590-

1_53.

33. Zeiler, M. D., Taylor, G. W. and Fergus, R. (2011)

“Adaptive deconvolutional networks for mid and high level

feature learning,” in 2011 International Conference on

Computer Vision. 2011 IEEE International Conference on

Computer Vision (ICCV), IEEE, pp. 2018–2025. doi:

10.1109/ICCV.2011.6126474.

34. Zhou, B. et al. (2016) “Learning deep features for

discriminative localization,” in Proceedings of 2016 IEEE

Conference on Computer Vision and Pattern Recognition

(CVPR). 2016 IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), IEEE, pp. 2921–2929. doi:

10.1109/CVPR.2016.319.

35. Zhou, Z. et al. (2018) “UNet++: A Nested U-Net

Architecture for Medical Image Segmentation.,” Deep

learning in medical image analysis and multimodal learning

for clinical decision support : 4th International Workshop,

DLMIA 2018, and 8th International Workshop, ML-CDS

2018, held in conjunction with MICCAI 2018, Granada,

Spain, S..., 11045, pp. 3–11. doi: 10.1007/978-3-030-00889-

5_1.

36. Duan, R. et al. (2022) “SODA: A large-scale open site object

detection dataset for deep learning in construction,”

Automation in Construction, 142, p. 104499. doi:

10.1016/j.autcon.2022.104499.

37. Zhang, J. et al. (2022) “A novel deep LeNet-5 convolutional

neural network model for image recognition,” Computer

Science and Information Systems, 19(3), pp. 1463–1480.

doi: 10.2298/CSIS220120036Z.

Contact Information

Mobile number: +91 9730043246

Email Id : GuptaSudhanshu@johndeere.com

Page 10 of 12

10/19/2016

Appendix

A. Implementation Detail
This section contains additional implementation details for our experiment, including data validation, network architecture, and inference procedure.

A.1 Validation dataset
The dataset used for training has proprietary concerns hence , we did not discuss the training dataset. But for the validation of this experiment, we have

used SODA open source dataset. Site Object Detection Dataset (SODA), which contains 15 object classes categorized by the worker, material, machine,

and layout. >20,000 images were collected from multiple construction sites in different situations, weather conditions, and construction phases, covering

different angles and perspectives.
We have to resize the input images from the dataset since the training dataset is of different shape. The reason is:

 Batch normalization normalizes the activations in a layer by adjusting and scaling them. It relies on the assumption that the input data has a

consistent shape across the batch. If you pass images of different shapes, it might lead to errors during the batch normalization process.

 To address this, you should ensure that the input images have the same dimensions. We have to either resize or crop the images before passing

them through the network.

 Max pooling is a down-sampling operation that reduces the spatial dimensions of the input data. Like batch normalization, max pooling

layers also expect a consistent input shape.

 If you provide images with different shapes, it can result in incompatible dimensions during the max pooling operation, potentially causing

errors.

 Similarly, you should preprocess your images to have consistent dimensions before passing them through the network.

A.2 Network Architecture
We have built our own custom version of U-net architecture but the ideology still remains the same. Figure 3.4.1 shows a simplified version of the U-

Net model. We have on purpose chosen this architecture because the bottleneck and skip connections give out feature vectors which are easy to record

and use for understanding the functionality. Let's delve into the details of Figure 3.4.1, a simplified representation of your custom U-Net model:
1. Encoder (Contracting Path): Convolutional Blocks:

 The contracting path consists of a series of convolutional blocks, each followed by activation layers (commonly ReLU) for feature extraction.

 These blocks reduce spatial dimensions while capturing hierarchical features.

2. Bottleneck Layer: Central Bottleneck:
 The bottleneck layer acts as the central hub, capturing the most abstract features from the encoder.

 It maintains contextual information crucial for accurate feature representation.

3. Decoder (Expansive Path): Transposed Convolutional Blocks:
 The expansive path uses transposed convolutions to upsample feature maps.

 Skip connections are concatenated to recover spatial details lost during downsampling.

4. Skip Connections: Role in Feature Preservation:
 Skip connections link corresponding layers between the encoder and decoder.

 These connections enable the model to preserve fine-grained details and facilitate gradient flow during backpropagation.

5. Output Layer: Segmentation Map:
 The final layer produces a segmentation map representing the predicted class labels for each pixel in the input image.

 We use softmax Activation functions for multiclass segmentation.

6. Feature Vectors: Extraction from Bottleneck and Skip Connections:
 The bottleneck and skip connections provide distinct feature vectors.

 These vectors capture both low-level and high-level features, aiding in the interpretability of the model.

7. Training Procedure:
 The model is trained using a focal loss function for image segmentation tasks

 During training, the network learns to adjust its parameters to minimize the discrepancy between predicted and ground truth segmentation

maps.

8. Inference Procedure:

 During inference, input images are passed through the trained network to obtain segmentation predictions.

 Feature vectors from the bottleneck and skip connections can be recorded and analyzed for insights into model decisions.

 In order to capture the activation map for every layer, we had to modify the model code. We had to make sure the weights and kernel were

being correctly returned and captured.

A.3 Transfer learning
The process of transfer learning in our case was not too complicated. We had to disable the learnable configuration of the encoder side of the model in

order to freeze the training on these layers. We also had to remove the last layer of the all-class model since the output layer of this model was 10 nodes

(classes) whereas the application required only 4 classes. We created a state_dict of the trained model and loaded it into a new model with all the right

architecture for application specific requirements. Then with the application specific labeled dataset, we ran training for some epochs.

Page 11 of 12

10/19/2016

The purpose of the second iteration training is for the decoder to be able to map the 10 class feature vector to 4 class output or application specific

output.

B. Visualizing outputs

We were returning every layer output in order to obtain the activation maps. In addition, we do iterations over every model kernel in order to incorporate

all the refined and learned weights. Figure 4.2.2 & Figure 4.2.3 are just handpicked visualized feature maps since visualizing other intermediate layers

will not make any sense. To give a broader aspect, we have attached a few examples where we can spot almost all the learned weights. These weights

will be in the order of the forward propagation. For these examples, we have taken the fine-tuned model to infer and visualize the vector maps.
 We can visualize the first layer of the network since the first layer adapts to learn information about the edges, color, shapes etc.

 The figure 4.2.1 shows all the kernels that have developed after training the model. This layer is on the encoder side of the model.

 We pick some distinct kernel from the figure that is highlighted and visualize the activation map of those kernels.

Figure 1: The image on the top represents the original image. The small boxes in between are the kernels selected for visualization. The 3 images

below are the visualization of activation maps from the respective kernels.

From the figure, we can clearly see how the initial layer has been trained so as to learn specific edges, color based information and activate those

specific instances. The leftmost kernel represents an orangish filter. The purpose of these filters is to highlight the features in the image which resonate

with the kernels characteristics. In the leftmost case, from the activation map, we can see that all orangish, yellow features have been activated. Hence

showing how the feature vector slowly builds to a complex array of numbers.

Page 12 of 12

10/19/2016

Figure 2: The above image describes the conversion of activation map and learning of features as the forward propagation progresses. The above layers

are a part of the encoder side of the model.

In the figure , we can clearly see the conversion of the feature vector into something that is visually confusing. Visually we can make sense of the initial

layers but as the network goes deep, the feature vector becomes an array of multidimensional numbers. For this reason, we track the first layer of

encoder and 2 last layers of decoder.

Figure 3: The above image describes the decoder side of the model. The order of forward propagation is followed from left to right . The rightmost

image is the final inference after getting the logits from the last layer.

In the figure we can see how the feature vector slowly builds up the information and segmenting the pixels to their respective classes. Skip connection

also plays an important role since it is responsible to pass on the initial important information.

