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Abstract 

In recent years, domain gap reduction has emerged as a crucial 

challenge in the field of computer vision. Domain gap reduction 

techniques are being employed in verity of computer vision 

applications like object detection and segmentation, Image style 

transfer and simulation to real etc. As the success of many vision 

models hinges on their generalization capabilities across different 

domains hence quantifying the performance of domain adaptation 

techniques is essential to assess their effectiveness in reducing the 

domain gap. In this paper, we present a systematic literature review 

on different techniques used for domain adaptation and analyze 

various methods used for quantifying domain gap. We commence the 

review with introduction and applications of domain adaptation and 

literature survey on different techniques used for domain gap 

minimization. Subsequently we discuss the methodology and 

evaluation techniques used to quantify domain gap followed by the 

merits and drawbacks associated with each approach. 

Through our comprehensive survey we reveal the progress made in 

quantifying domain gap reduction enabling researchers to make 

informed decisions when selecting appropriate evaluation technique 

for domain gap minimization. 

Introduction 

In recent times, we have seen how artificial intelligence (AI) and 

machine learning (ML) have made it possible for intelligent systems 

to be used in various real-world applications. However, there is a 

significant challenge that needs to be overcome in implementing 

these systems - the domain gap. This refers to the difference between 

the data used for training, which is simulated, and the real-world data 

that the model is expected to work with. It is important to reduce this 

domain gap in order to ensure that AI systems are reliable and can 

withstand real-world scenarios. Even though we are making progress 

in understanding the difference between different domains, there is 

still a lack of research when it comes to thoroughly analyzing the 

evaluation metrics that are specifically designed to minimize this 

domain gap. The purpose of this paper is to fill this gap by 

conducting a detailed analysis of various evaluation metrics. The 

reason why we are conducting this analysis is because we want to 

have a deep understanding of how well metrics work, so that 

researchers and practitioners can make smart choices when trying to 

create strong AI models. The main goal of this research is to carefully 

examine the evaluation metrics that are currently being used to 

minimize the differences between different domains. We intend to 

evaluate these metrics in a variety of contexts to expose their 

limitations and benefits to provide insightful data that will improve 

performance in domain gap reduction. 

Background and Motivation 

The concept of domain gap adaptation has come up as an important 

field of study and research. Domain adaptation refers to the task of 

adjusting a model that was trained in one domain so that it can work 

well in another related domain. This usually comes into play when 

there is difference between original data where the model was trained 

and the new domain where it needs to perform properly [1]. The 

primary objective of domain adaptation is to reduce the disparity 

between these two domains, enabling the model to demonstrate its 

efficacy in the new domain. The crucial skill of efficiently bridging 

the gap between diverse domains and adjusting models and 

algorithms to unfamiliar data holds immense significance in 

numerous applications, like computer vision, natural language 

processing, and healthcare [2][3][4]. As the organizations are striving 

to leverage the power of ML and AI, the need for robust domain 

adaptation techniques has becoming increasingly evident [5][6]. By 

minimizing domain gap, we can enhance performance of the models 

when applied on data that diverges from their original training 

domain. This is especially important in scenarios where the target 

domain has different features than the source domain. Domain gap 

adaptation holds substantial importance as it allows the application 

and utilization of ML models and algorithms across the different 

domains.[6][7][8]. Many domain adaptation methods use adversarial 

training to improve the robustness of a model by employing 

adversarial examples. In recent years generative adversarial networks 

(GANs) are admired for their excellent generative capabilities. 

Goodfellow et al. [9] proposed this technique in 2014. Since then, 

countless papers published on using the GANs for verity of syntenic 

data generation applications [10][11]. One of the major applications 

is using these generative models for applications like Sim2Real.Many 

researchers have showcased ability of using GANs for such 

applications [12][13][14][15]. One key challenge that is consistent 

for all these methods is to quantify the model performance. Most 

common metrics which are mainly used to assess the GANs is 

Fréchet Inception Distance (FID) and Kernel Inception Distance 

(KID) [16][17]. Both the metrics are used to quantify the quality of 

generated samples by GANs. We are utilizing FID and KID as 

foundational metrics to assess the performance of GAN models. 

These metrics serve as key benchmarks in our evaluation process. 

We have selected three distinct implementations of FID and KID i.e., 

Torchmetrics, clean FID and Pytorch FID [18][19][20], and we will 

be conducting a comprehensive quantitative evaluation of these 

implementations. This will encompass a systematic and thorough 

assessment of their performance, ensuring a data-driven analysis of 

the capabilities and limitations of each implementation. 

Domain Gap Minimization 

Domain gap minimization is a technique that aims to reduce the 

difference, between the source domain and the target domain. As 

depicted in figure 1 there is a shift between the source and target 

domains, which leads to lower performance of the source classifier 

on the target domain. By minimizing this gap, we can align the 

source and target domains resulting in improved performance of 

domain classifier. In this study our goal is to measure the disparity 

between real data domains. We aim to enhance the quality of data by 

reducing the domain gap between simulation and real data. There are 
many approaches that can be used to accomplish this objective.
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Domain Adaptation: This approach aims to align the model with the 

target domain by minimizing the discrepancy between source and 

target data domains. Adversarial training and domain adversarial 

neural networks are some of the examples of domain adaptation. 

Transfer learning: This approach includes refines the model that has 

already been trained on the source domain and applies it to the target 

domain. The model leverages the knowledge acquired in the source 
domain and endeavors to adjust to the target domain. 

Augmentation:  During training process, various transformations are 

applied to simulated data, including geometric transformations such 

as scaling, rotation and color adjustments. These transformations 

make the model more robust and able to handle a variety of real-
world changing scenarios. 

Self-supervised learning: Model trained with this technique predicts 
certain properties of data without explicit labels. Such model  

leverages the learnings to learn some useful representations that can 
be transferable to target domain. 

We will be conducting comprehensive analysis on evaluation metrics 

used for this by focusing on performance evaluation of different 
evaluation metrics used in general. 

 

Figure 1. Domain Gap Minimization: Aligning the source and target domain features improves cross domain classification. 

 

Figure 2 Systematic noise variations in the image: Gaussian noise, Gaussian blur and Salt and paper noise 

 

Figure 3 Systematic color variations in the image: color contrast, color grade and color saturation 
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Method 

Overview 

The objective of this study is to rigorously evaluate the effectiveness 

of domain gap minimization techniques, with a particular focus on 

the quantitative measures of FID and KID. To achieve this goal, a 

comprehensive image dataset representative of the target domain is 

utilized, and stringent preprocessing procedures, such as 

standardization and normalization, are implemented. Our 

experimental design involves the systematic application of three 

distinct types of noise Gaussian noise, Salt and Pepper noise, and 

Gaussian blur across a range of intensities, and also manipulating 

color-related parameters, such as contrast, saturation, and color 

grades, to shed light on their impact on quantifying domain gap by 

these metrics. To minimize the impact of potential biases, a 

randomization protocol is implemented. Evaluation metrics, 

including FID and KID, are rigorously calculated for each 

experimental condition, establishing benchmark metrics. 

Data Preparation 

The experimental setup is based on a factorial arrangement that 

systematically integrates different noise levels and color variations. 

To minimize the impact of potential bias. Only a few data samples 

are selected from the real data distribution in this case it is from 

roboflow dataset [22]and as mentioned in the methodology, noise and 

color variations are systematically added to the data. Refer figure 2 

and figure 3. In addition, this advanced data is used to evaluate the 

performance of FID and KID by recording the variation of the 

metrics according to the different levels of noise and color variation. 

Evaluation 

Performance evaluation of the selected metrics is conducted by 

plotting the behavior of FID and KID implementations in response to 

noise and color variation. This evaluation offers valuable insights into 

the sensitivity and robustness of these metrics in the presence of 

image distortions. The impact of noise on FID and KID scores can 

indicate whether the metric is capable of capturing dissimilarities 

between generated and reference images. Ultimately, determining the 

thresholds at which FID and KID scores begin to exhibit significant 

deviations helps to establish the limits of noise tolerance for these 

metrics. 

 

 

Figure 4 Torchmetrics FID, Clean FID and Pytorch FID implementation performance plots for noise variations 
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Figure 5 Torchmetrics KID, Clean KID and Pytorch KID implementation performance plots for noise variations 

 

Figure 6 Torchmetrics FID, Clean FID and Pytorch FID implementation performance plots for color variations 

1 
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Figure 7 Torchmetrics KID, Clean KID and Pytorch KID implementation performance plots for color variations 

Results and Analysis 

FID: It is clear from the figure 4,5 below that the Torchmetrics FID 

outperforms the other implementations in capturing noise levels at 

each level for all types of noise and color variations introduced. The 

consistently increasing slope of the Torchmetrics scores confirms its 

sensitivity to noise and color variation in output. In contrast, the 

Pytoch FID implementation is poor and less sensitive to noise 

variations beyond 20% except for gaussian blur, indicating 

inconsistent behavior. The clean FID behavior is close to 

Torchmetrics FID and captures all noise and color variations with 

some deviation for higher levels of noise. 

KID: Regarding the KID, while it achieves unbiased estimates, it 

suffers from high variance and is sensitive to sample size. Varying 

the sample size may lead to unreliable KID scores. The Torchmetrics 

KID also has high variance, resulting in an unreliable score. 

However, the clean KID performs better than the other two 

implementations. 

Based on these findings, we hypothesize that the Torchmetrics FID is 

robust enough to capture various noise and color variations in 

images, making it suitable for applications such as Sim2Real and 

minimizing the gap between simulation and reality. In the validation 

section, we will experiment with sim2Real and use the same metrics 

to assess model performance. 

Validation 

To validate our hypothesis, we established an experimental setup for 

Sim2Real using Enhancing Photorealism Enhancement (EPE) GAN. 

This GAN implementation uses intermediate representations 

produced by conventional rendering pipelines called G-Buffers to 

enhance the images. Our objective was to employ the EPE GAN 

module to minimize the domain gap and utilize the FID and KID 

implementations to assess the model's performance. We trained our 

model using approximately five thousand synthetic and real images 

respectively. The model was trained for a total of 180k iterations, 

with a validation interval of 3k iterations. At each validation interval, 

we calculated the FID scores for all implementations and plotted the 

results. The figure 4 depicts that Torchmetrics FID effectively 

captures the progress of simulating to real gap minimization as 

compared to the other two implementations. Furthermore, we 

validated the domain-adapted synthetic images generated by the EPE 

GAN [21] model by predicting them through an image segmentation 

model that was trained on real images only. The segmentation 

model's performance was improved on the converted synthetic 

images, confirming the domain gap minimization, and the model was 

able to align the source synthetic domain to the target real domain. 

 

 

 

Figure 8 EPE GAN block diagram: Image Enhancement network uses G-

buffers to enhance the rendered image. 
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Figure 9 Validating EPE GAN using Torchmetrics, clean and Pytorch FID: Torchmetrics FID plot confirms the hypothesis made above the smooth downward slope 
captures the domain gap minimization effectively as compared to other two implementations. 

 

Summary 

In assessing the efficacy of various metrics in determining 

dissimilarities between visual representations, it has been observed 

that Kernel Inception Distance (KID) provides unbiased evaluations; 

however, it is characterized by a considerable degree of variability. 

The measurements obtained from Fréchet Inception Distance (FID) 

and KID exhibit inconsistent outcomes depending on the quality and 

dimensions of the images under consideration. Among the various 

implementations of Clean FID, one has been noted for its capacity to 

seamlessly accommodate disparate outcomes without experiencing 

substantial alterations.  

When it comes to accurately quantifying domain shift phenomena, 

Torchmetrics FID shows itself to be a strong performer when 

capturing domain shift in both simulation and real-world scenarios. 

An interesting avenue for future research is to apply FID and KID 

metrics to closely matching features instead of doing comprehensive 

image comparisons. This refined strategy may help clarify minute 

details in features and textures in transformed images, which would 

improve the fineness of domain gap analysis and increase the 

accuracy of evaluation techniques. 
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Definitions/Abbreviations 

AI Artificial Intelligence  

ML Machine Learning 

GANs Generative Adversarial 

Networks. 

FID Fréchet Inception Distance  

KID Kernal Inception Distance 

EPE Enhancing Photorealism 

Enhancement  

 

 

    

 

https://lightning.ai/docs/torchmetrics/stable/image/frechet_inception_distance.html
https://lightning.ai/docs/torchmetrics/stable/image/frechet_inception_distance.html
https://github.com/mseitzer/pytorch-fid
mailto:sandip.patil824@gmail.com

