
Page 1 of 7

20XX-01-XXXX

Analysis of simulators for designing network architecture in Wireless Sensor
Network applications.

Abstract

Recent advancements in energy efficient wireless communication

protocols and low powered digital sensor technologies have led to the

development of wireless sensor network (WSN) applications in diverse

industries. These WSNs are generally designed using Bluetooth Low

Energy (BLE), ZigBee and Wi-Fi communication protocol depending

on the range and reliability requirements of the application. Designing

of these WSN applications also depends on the following factors. First,

the environment under which devices operate varies with the industries

and products they are employed on. Second, the energy availability for

these devices is limited so higher signal strength for transmission and

retransmission reduces the lifetime of these nodes significantly and

finally, the size of networks is increasing hence scheduling and routing

of messages becomes critical as well. These factors make simulation

for these applications essential for evaluating the performance of

WSNs before physical deployment of network in a cost-effective

manner. Since there are several WSN simulators with different

functionalities, this paper aims to deliver a comparative study of the

features of most widely used simulators. This study includes

evaluation of these simulators based on communication protocols

supported, visualizations for the network, calculation of network

performance parameters like packet delivery ratio, throughput, energy

consumption, and support for the channel modelling. The uniqueness

of this study arises from its focus on the BLE network simulations

since it is increasingly become a protocol of choice for WSN

application in automotive domain. Also, we consider both open source

and closed source simulators. This study also becomes necessary as

many of the simulators discussed in the existing studies have become

obsolete and the classification parameters don’t consider the wireless

communication protocols supported by them. Through this analysis of

simulators, the best choice of simulator for an application can be made

without investing too much time in exploring all the options.

Introduction

IOT and WSN are two technologies at the forefront of the changing

technological landscape in the fields of automation and autonomy. The

application of these two technologies in tandem are changing the

landscape of industries and these technologies are starting to get

employed in both on road and off-road vehicles as well. These

technologies can be employed in the autonomous vehicles where they

help them to understand their surroundings. Wireless sensor networks

(WSN) are a group of devices employed in a region of interest to

collect the information about environment. IOT technology is used to

transfer the collected information by these WSN to web and perform

analysis of these data for better decision-making.

Wireless communication helps in removing the excessive wiring used

for establishing communications in the sensor networks. Excessive

wiring has an impact on the overall efficiency of the system as well as

in factories applications this can lead to increased cost of wiring as the

area which needs to covered will be in range of kilometers. In case of

off-road vehicle application any breakage in wired system can lead to

increased downtime.

An important parameter for these WSN is the energy consumed by the

sensor node since they are mostly battery operated. A large part of the

energy is consumed for the wireless communication so making use of

power efficient communication protocols becomes a necessity. Along

with the low energy highly reliable communication is another

necessity in these networks. There are multiple wireless

communication protocols like BLE, Zigbee, Wi-Fi available for setting

up communication in these networks. BLE has recently been gaining

high adoption in applications for WSN and there are multiple ways for

setting up communication between devices in this protocol like

connectable and non-connectable mode, scannable and non-scannable

mode and directed and undirected mode. Earlier the preferred choice

used to be ZigBee because of its low energy consumption compared to

Wi-Fi. Simulations can help in making the informative decision for the

choice of protocol in these applications according to the system

variables.

There are multiple simulators available as well for simulation of WSN

networks and multiple studies have been conducted in past on this

topic just because of the presence of a large number of open source

simulators. Ivan Minakov in [1] presented a comparative study of

simulators and divided the simulators in three categories named

generic network simulators, network-oriented simulators and sensor

node-oriented simulators. The study considered all the open-source

simulators present at that time like MiXiM (Mixed Simulator),

Castalia, NS-2 (Network Simulator – 2), PASES (Power Aware

Simulator for Embedded Systems), TOSSIM, COOJA, MSPSiM and

many more. Most of these simulators are used to create IEEE 802.15.4

based low-rate wireless personal area network. The first version of

Bluetooth Low Energy (BLE), BLE v4.0, was introduced in year 2009

so none of the simulators mentioned could be readily used for BLE

based network simulation. Although few of these simulators do

support simulations for WI-Fi based systems. In [2] simulators for

BLE like MATLAB Bluetooth toolbox, BLE simulator of Mikhaylov

and a BLE peripheral simulator based on android are discussed. The

discussion about MATLAB Bluetooth toolbox done in the paper is

limited to its functionality introduced in the first version of the toolbox

where the functionalities were limited to interaction with the nearby

BLE devices using the host BLE device. Lot of important features have

been added to the toolbox since its first version making it suitable for

advanced use cases as well. Other simulators discussed in the paper

were developed only for individual research purposes and have not

been updated to incorporate the changes in BLE stack since. Few other

studies have been conducted in past like simulation tools for WSN

applications under water in [3], survey and comparison of simulators

in [4] and similar comparison of simulators to form a guideline on

Author: Mr. Garvit Periwal, John Deere
Co-Author: Mr. Swarupanand Sewalkar, John Deere and Mr. Prashant Koparde, John Deere

Page 2 of 7

which simulator to use in particular situation was done in [5]. The

comparison parameters considered in these papers are simulation

engine, scalability, coding language used, routing, energy profiling,

accuracy etc. but none of them talks about the supported wireless

communication protocols in them and the efforts required for building

a simulation model in them for a particular type of wireless

communication technology. Also, many of the simulators discussed in

these papers are either discontinued or support for them is no longer

available.

In this paper these simulators are discussed keeping the

communication protocol at center as now there are multiple ways in

which in these applications can be built and discuss which simulator is

best for particular type of communication protocol. Detailed analysis

of NS-3, MATLAB Bluetooth toolbox and COOJA simulator is

performed in this paper.

In next section we will first discuss the need for simulators and general

parameters used for evaluation of a wireless network. Then we will

deep dive into NS-3, COOJA and MATLAB Bluetooth Toolbox and

in end we will summarize and compare the simulators.

WSN Simulators

The need for simulations arises from the fact that the size of the WSN

in terms of number of devices in the system is increasing and these

systems are becoming more complex in nature. A direct deployment

of such a large network could prove costly and might not be able to

produce the most optimal solution for the problem needed to be

rectified. Also, most of the devices are only designed to support a

single communication protocol only. If the communication protocol in

these devices doesn’t meet the requirements and needs to be changed

at a later stage these devices would become redundant and lead to

increased overall project cost.

To give a high overview of any wireless communication system the

modelling of these systems revolves around the three layers that is

physical layer which controls the radio of the device, and it is

responsible for actual transmission and reception of the data packets.

The link layer is responsible for assigning the role to device’s radio

i.e., whether it is going to transmit the packets or receive them. Then

comes the higher-level layer called as the application layer, this is

where the users interact with the device and manage the connection

between device, format for sharing of data and all the security related

aspects.

To evaluate the performance of any wireless network few of the

commonly used parameters include –

1. Packet Delivery Ratio (PDR) – It is the ratio of total number

of packets sent by the device to the number of packets

successfully received at the observer. This is used as an

indicator for reliability in the wireless communication.

2. Latency – It is the time taken for transmission of packet from

the source to the destination node. Generally, latency will be

higher in mesh networks when compared to star type due to

presence of relay nodes in the system.

3. Throughput – It refers to the amount of data received at the

receiver in a particular span of time. Bandwidth refers to the

maximum achievable link speed whereas the true value in

the system is represented by throughput.

4. Energy Consumption – This is another important factor as

these devices are generally energy constrained.

5. Packet Error Rate – This factor is used to represent the

number of packets received incorrectly at the PHY layer of

device. One of the reasons for this is the packet collisions

happening in the system.

All the simulators discussed in the paper have functionalities to

calculate these values for the system.

Network Simulator- 3 (NS - 3)

NS - 3 is one of the most widely used open-source software for doing

simulations of internet-based systems. The framework of the tool is

written in C++ and python. It is a discrete event simulator which

basically means the operations of the system are modelled as a

sequence of events in time. These events occur at a particular instant

in time and the state of the system at that instant is recorded. NS-3

provides a platform to simulate multiple types of communication

network system like wired, wireless and satellite based. NS-3 has a

well-maintained stack for Wi-Fi and supports wired communication

simulations like ethernet based system as well. The platform is very

comprehensive in nature because of the support for multiple protocols

inside each layer of stack for a particular type of wireless

communication system. Also, it is flexible and customizable in nature

because of its open-source nature. The source codes are freely

available for researcher to modify and test for multiple scenarios. NS-

3 allows for modelling realistic network behaviors by allowing to

model a system for packet loss, interferences, and mobility in the

system. The extensive support for logging and tracing the events in

system allows the researchers to analyze the network performance in

depth and helps in debugging any unusual behavior in the system.

NS-3 is an updated version of NS-2 and the project was started in the

year 2006. The major difference between these simulators is the

scripting language used in them. Programs in NS-2 are scripted in

object-oriented TCL (OTcl) and these simulations cannot be run purely

using C++. The components in NS-2 were also written as a mix of

C++ and OTcl. In NS-3 all the components are written in C++ and the

python bindings are also provided as an option hence the simulations

can be built using both C++ and python language. The support for

python has made this simulator more accessible to researchers because

of the ease of scripting in python however, the most widely used

scripting language of NS-3 still remains C++. Also, NS-3 is not

backward compatible to NS-2 simulator. NS-3 is an actively

maintained simulator whereas support and development for NS-2

stopped once the NS-3 was launched. Both NS-2 and NS-3 is primarily

used on Linux or macOS and the windows user can use it with the help

of Linux virtual machines.

Building wireless system in NS-3

NS-3 has a modular architecture and is built as a system of libraries

that has support working with each other. To build a system in NS-3 a

user can make use of components available in these libraries and

establish a link between these components to scale up the system.

The basic element of a system in any communication system is a node.

This term originates from graph theory and basically represents a

computing device in the system. This is a high-level representation of

a computing device in a system and all the properties like application,

communication channel and protocol stack associated with the type of

communication system will be added to these nodes. For example, In

a wired system to get a ethernet like functionality than this node will

be assigned a carrier sense multiple access (CSMA) communication

channel model, a CSMA network device manager to establish

Page 3 of 7

communication with other nodes and a topology helper to configure

the node with basic communication properties like data rate, delay and

device address etc.

For building a wireless network system in NS-3 using Wi-Fi as

communication protocol, first the nodes are added in the system and a

container is created to hold these devices. In the next step assignment

of the interconnection channel is done to these devices, which in this

case will be the channels in the unlicensed 2.4 GHz spectrum. Once

these channels are associated with the device the basic modelling for

the PHY layer of the device is complete. Other configurations like

which channels to make use off, receiver sensitivity for the device,

transmission signal strength etc. can also be added to the PHY layer.

Figure 1. Command line output format

NS-3 has multiple models of 802.11 for an accurate implementation of

MAC layer. To configure MAC layer, assignment of a service set

identifier (SSID) is made. This SSID ensures that the Wi-Fi network

has a unique name, and the Wi-Fi helper object will configure the

device to 802.11ax standard which is also known as the Wi-Fi 6

standard in general use. Once all the parameters specific to PHY and

MAC layer of the node are configured mobility models are added in

the system if mobile scenarios are present in the application. Then the

devices are assigned their IP addresses and client and server roles are

defined to the nodes. Here the nodes can be configured to support

either the TCP/IP or UDP protocol. At this point a basic wi-fi system

is ready for simulation. The command line output format generated in

NS-3 is shown in Figure 1.

An important point to note here is that NS-3 doesn’t have support for

visualizing the networks on its own, but users can add their own

visualization tools to it. On running the simulation, a trace file in XML

format is generated which can be used to add visualization. One of the

most widely used animator with NS-3 is NetAnim based on Qt toolkit.

The output in NetAnim is divided into 3 tabs – animator, stats, packets.

The animator window output is shown in Figure 2, it shows the

positioning of nodes and transmission of packet. Figure 3 represents

the stats for each individual node in system and can be accessed using

the stats tab of NetAnim. Packets tab provide information for packets

in tabular format with timestamps.

Figure 2. NetAnim animator window output

NS-3 has support available for both propagation loss model (PLM) and

propagation delay models as well. These propagation model helps in

replicating the environment for which the application is intended for.

Support for popularly used models like two ray ground tracing PLM

for incorporating the effect of reflections from ground, log distance

PLM for modelling path loss a signal experience in closed structures

like buildings or a densely populated area, Okumura Hata PLM for

modelling loss in urban areas etc.

Figure 3. NetAnim stats window output

NS-3 also has capability of modelling multiple energy frameworks as

energy consumption is one of the most important factors in any

wireless device. There is implementation available for frameworks like

energy source model, energy consumption model and energy

harvesting models in NS-3. Energy Source model are used for

modelling the source of power like capacitor or batteries whereas the

energy harvesting model are used for modelling the production of

energy while the devices are in operation using the sources like solar

panels or piezoelectric harvesters. Energy consumption models are

used to represent the devices which are going to use the power from

source and harvesters.

The support for almost all the aspects of wireless communication is

available in NS-3 making it a go to simulator for Wi-Fi network

simulations but user need to have a decent knowledge of C++, working

in LINUX and using command line arguments for interacting with

simulator. These factors make the learning curve for using the

simulator a bit step.

BLE Simulations in NS-3

NS-3 has no support for BLE stack, but researchers have built their

own BLE stack in NS-3 in past for exploring various aspects of

protocol. In [6] MAC address randomization framework was built in

NS-3 to study the security features of BLE protocol. Another BLE

stack implementation for analytical modeling of BLE protocol-based

sensor network in NS-3 is present at [7]. These frameworks are not

updated to the latest BLE stack and user need to have a grip on the C++

to understand and modify these implementations.

Contiki OS Java simulator (COOJA)

One of the most widely used operating system in IoT devices is Contiki

operating system. Contiki OS is an open source and very less memory

consuming OS designed specifically for devices with limited

computational power. To simulate or emulate nodes or devices running

on this operating system Contiki OS Java simulator (COOJA) is used.

COOJA is a user-friendly simulator because of its GUI and a basic

system of nodes can be built directly using the GUI. Its main features

include support for protocols like 6LoWPAN, CoAP and IEEE

802.15.4. It also has features for debugging and analyzing the

performance of the network. To add other features to the node the

developer can easily access the source code and do the modifications.

Page 4 of 7

COOJA also works in a LINUX based environment and the scripting

can be done using C language.

Building wireless system in COOJA

The devices in COOJA simulator are referred to as motes. COOJA has

virtual motes for various real devices and the COOJA Mote platform

is available in it which can help in creating custom virtual devices with

ease. COOJA has support for wireless communication protocol IEEE

802.15.4. This protocol falls under the category of low data rate and

low power consuming wireless communication protocol and is one of

the most widely used communication protocol in IoT devices and

WSN. The most widely used modification of this standard is ZigBee

which is maintained by the ZigBee Alliance. The support for protocols

in other layers of the communication protocol like 6LoWPAN (IPv6

over Low-power Wireless Personal Area Networks) which helps in

assigning address to these devices and connecting them over the

internet, CoAP (Constrained Application Protocol) and MQTT

(Message Queuing Telemetry Transport) which are application layer

protocol and routing protocols like RPL (Routing Protocol for Low-

power and Lossy Networks) also exists. Other than these standard

protocols, COOJA also allows developers to build their custom

protocols tailored for their needs.

Figure 4. COOJA simulator user interface

To build a network of motes in the COOJA the process is start by

selecting the radio medium which closely represent the real

environment devices will be operated under. The options available for

selection are unit disk graph medium (UDGM) distance loss or

constant loss model which creates to circle or disks around motes to

show its range of transmission and interference, directed graph radio

medium (DGRM), multi-path ray tracer medium for modelling an

environment where there are multiple sources of reflection around the

nodes and to simulate an ideal scenario, there is an option to no radio

traffic medium as well. In the next step a startup delay is added to the

node. At this point the environment for nodes is setup and the user

interface produce is presented in Figure 4. Next, the number of motes

required in the application are added to the system. There are multiple

types of motes which can be emulated in COOJA like Sky mote,

CC430 mote, Z1 mote, Exp motes etc. Also, an option to create a

COOJA mote is present here. After selecting the type of mote, these

motes are configured with the Contiki process or firmware. Then

number of motes required in the system are added. Along with number

these motes are assigned a position and there are prebuilt options of

positioning these nodes available as well. These motes can be placed

in random, linear, or elliptical fashion or assigned a position manually

as well. Once the motes are added in the system, these motes are

configured to display the properties like log output, addresses, IDs,

position etc.

Figure 5. Network window view in COOJA simulator

Apart from the network window which displays the created network as

presented in Figure 5, there is a simulation control window, mote

output window and timeline window present in the COOJA simulator.

Simulation control window is used to control the simulation speed or

to procced the simulation in steps and to start and pause the simulations

in general. The Mote output window displays the activities performed

by each node in time as shown in Figure 6. The output parameters like

power, transmission and reception of packets can also be monitored

using this window. The timeline windows show the activity performed

by each mote on a common timeline. The green and gray area around

the mote represents the range of a particular mote.

Figure 6. Mote output window view in COOJA simulator

The GUI of COOJA is quite rich and the basic system can be built

entirely with the help of GUI. The visualization for results produced is

quite good as well. The requirement of working with the command line

arguments is also limited which reduces the efforts required for getting

started with the toolbox.

BLE Simulations in COOJA

COOJA has a very limited support available for BLE network

simulations. In [8] Micheal Spork developed a BLE stack

implementation for exploring IPv6 packet exchange using BLE

technology. The extension is available for Contiki-NG (Contiki-Next

Generation) version. This implementation has support for advertising,

initiating connections and configuring device as central and peripheral

and IPv6 implementation for BLE as specified by RFC 7668. This

stack is also not updated to keep in pace with the BLE stack changes.

Page 5 of 7

MATLAB Bluetooth Toolbox

Mathworks introduced its MATLAB Bluetooth toolbox with limited

functionalities initially in 2019b version of MATLAB. The

functionalities introduced at start were limited to simple applications

like detection of nearby BLE devices, forming connections with

device, transmitting and receiving the data in both ASCII and binary

forms. It made use of the Bluetooth device on the laptop either internal

or external for achieving these functionalities. The support for

simulating a BLE network wasn’t present in toolbox at that time but

the recent versions of the toolbox support simulations of BLE devices

as well. The latest version of the toolbox is 2023b and the toolbox has

now been developed to the extent that it can simulate any number of

BLE nodes without any dependencies on the host Bluetooth device

while retaining its earlier core functionalities as well.

Building BLE system in MATLAB

For simulating a simple connected type of network in MATLAB

Bluetooth toolbox, the first step is to assign roles to Bluetooth device

using “bluetoothLENode” object in toolbox which creates a virtual

BLE device. The roles allowed for the devices are –

1. Central or peripheral to simulate BLE nodes working in

central and peripheral role.

2. Isochronous – broadcaster and synchronized – receiver to

simulate BLE broadcast audio network.

3. Broadcaster – observer role for nodes working in mesh

network simulation.

Along with assigning the roles to device various parameters associated

with these roles are defined. On transmitter side parameters like

position, signal power and antenna gain, advertising interval etc. are

defined. On receiver side its position, gain, sensitivity, range, scan

interval etc. parameters are defined. Flexibility in choice of these

parameters helps to model the hardware intended for final application.

After assigning the roles to devices, connection related parameters like

connection interval, connection offset, active period etc. are defined

and a connection is configured between the nodes. Next, parameters

related to network traffic are defined like application layer data rates,

on and off time etc. After attaching this traffic to the nodes, direction

of the flow is defined, and these nodes are passed to the simulator.

Additionally, there are helper functions available for adding

visualization to these simulations. To calculate various parameters at

PHY, link layer (LL) and application layer (App) level there are

statistics function available and the results are presented in Figure 7.

Figure 7. Statistics calculated layer wise in MATLAB

This framework remains similar for building different type of networks

like mesh and audio with only changes to the script in accordance with

the protocol requirements for different modes. For example, in mesh

network simulations in addition to source and destination node, relay

node role is assigned to some BLE devices in network so that a path

can be formed between the origin and destination node as shown in

Figure 8. The network judgement parameters like packet delivery ratio,

throughput and latency can be accessed using the statistics function for

both peripheral and central device.

Figure 8. Mesh network simulation in MATLAB

The physical layer statistics calculated include received and

transmitted packets by device, Packet and co channel collisions

including information about both collisions with BLE and non-BLE

packets. Also, if there are any decode failures or packets with invalid

length and address will be reported here. The link layer statistics

contains information about transmitted and received packets in detail

like the total number of packets in each category, number of data and

empty packets out of them. The information about node associated

with the device is recorded in link layer as well. For example, in the

case discussed above peer node for peripheral node will be displayed

as central node and vice versa. It also contains information about the

time for which the device was in idle, listen and sleep state. This

information helps in calculating the energy consumption and the

lifetime of the device for a given battery size. Other important

information contained in the link layer include the throughput for the

node as well as packet loss ratio. In the application layer, statistics like

transmitted packets and bytes, received packet and bytes and latency

information associated with the connection are present.

The overall architecture for building an application remains quite

similar to NS-3 but the level of simplicity in building the scripts is

much higher due to less level of complexity involved in MATLAB

scripts compared to C++ .

MATLAB also supports addition of interference in simulations.

Toolbox has the flexibility of having WLAN nodes working in

conjunction with the BLE nodes and the statistics information take care

of this case as well. The parameters like collision with non-BLE

packets record information about packet loss in simulations when these

types of 2.4 GHz spectrum devices are available in vicinity. This is one

of the most important features for designing accurate models as the

devices in this spectrum are increasing day by day. Also, these

simulations help in analyzing the link layer level features of BLE like

adaptive frequency hopping. The simulations approach this situation

by defining a channel map and classifying channels as good or bad for

transmission. Also, support for both the channel selection algorithm 1

and 2 as specified by Bluetooth core specifications is present in the

toolbox.

The environment for nodes changes with industry these applications

are intended for like an off-road vehicle application would have higher

multi path reflections because of the presence of metal in vehicle and

implements but in an office environment application, obstruction

would have higher impact on packets strength and path. MATLAB has

support for standard path loss models specified by Bluetooth self-

Page 6 of 7

interest group (SIG) like office, industry, free space as well as higher

multipath reflection models popularly used like Rayleigh, Rician

model and raytracing.

Simulations for few other applications like direction and position

finding which are built using angle of arrival (AOA) and angle of

departure (AOD) calculations, concepts of triangulation and antenna

switching can also be built in this toolbox. Also, simulation support for

audio applications is available as well. In these applications calculation

for the PDR in various scenarios can be done and heatmap can be

generated as well for PDR distribution around the structure in which

device is operating. Modelling of Voice communication with WLAN

interference is also supported. At PHY layer the support for LE1M,

LE2M as well as the LE coded mode is present. Bluetooth LE

waveform generation and visualization features are also supported.

Similar support for classic Bluetooth exists as well.

Overall, MATLAB Bluetooth toolbox supports simulations for almost

all the features of BLE along with the ease of use and great

visualization support making it one stop solution for building WSN

applications using BLE as communication protocol.

Conclusion

The advancement in low energy wireless communication protocols

have provided more flexibility and multiple options for building WSN

and hence the simulators now have to be analyzed not only according

to their features but also according to the protocol they support. NS-3

has a well-maintained stack for Wi-Fi protocol, COOJA simulator

provides excellent platform for simulating Contiki OS and Zigbee

communication protocol, but both these simulators have limited

support for BLE network simulations. Mathworks with its Bluetooth

toolbox provides excellent support for simulating the BLE networks

and supports all the features for making the environment around nodes

close to practical scenarios.

References

1. Minakov, Ivan & Passerone, Roberto & Rizzardi,

Alessandra & Sicari, Sabrina. (2016). A Comparative Study of Recent

Wireless Sensor Network Simulators. ACM Transactions on Sensor

Networks. 12. 10.1145/2903144.

2. Yordanov, Y., & Haka, A. (2022). Bluetooth Low Energy

Technology Simulators. The Journal of CIEES, 2(1), 7–11.

https://doi.org/10.48149/jciees.2022.2.1.1

3. Murgod, Tejaswini & Sundaram, (2021). A comparative

study of different network simulation tools and experimentation

platforms for underwater communication. Bulletin of Electrical

Engineering and Informatics. 10. 879-885. 10.11591/eei.v10i2.1466.

4. Sundani, Haoyue & Li, Vijay & Devabhaktuni, Mansoor &

Alam, Prabir & Bhattacharya, & Sundani, Harsh & Li, Haoyue &

Devabhaktuni, Vijay & Alam, Mansoor & Bhattacharya, Prabir.

(2011). Wireless Sensor Network Simulators: A Survey and

Comparisons. International Journal Of Computer Networks.

5. Jevtić, Miloš & Zogovic, Nikola & Dimic, Goran. (2009).

Evaluation of Wireless Sensor Network Simulators.

6. Abhishek Kumar Mishra, Aline Carneiro Viana, Nadjib

Achir. SimBle: Generating privacy preserving real-world BLE traces

with ground truth.

7. https://documents.kartikpatel.in/ns-3-dev-

git/group__ble.html

8. Michael Spörk, Carlo Alberto Boano and Kay Römer,

"Improving the timeliness of Bluetooth Low Energy in dynamic RF

environments", ACM Transactions on Internet of Things, vol. 1, no. 2,

pp. 1-32, 2020.

Contact Information

e-mail: periwalgarvit@johndeere.com

e-mail: sewalkarswarupanand@johndeere.com

e-mail: kopardeprashant@johndeere.com

Garvit Periwal, John Deere

Swarupanand Sewalkar, John Deere

Prashant Koparde, John Deere

https://documents.kartikpatel.in/ns-3-dev-git/group__ble.html
https://documents.kartikpatel.in/ns-3-dev-git/group__ble.html
mailto:periwalgarvit@johndeere.com
mailto:sewalkarswarupanand@johndeere.com
mailto:kopardeprashant@johndeere.com

Page 7 of 7

