Digital Thread Standards, Frameworks, Tools & Technologies Workshop

December 2023

Speaker Profile

Dr. Robert Rencher Associate Technical Fellow – Sr. Systems Engineer, The Boeing Company

As a Sr. System Engineer, Robert provides leadership in facilitating a common understanding, strategic roadmap, and functional utilization of Digital Twins and Digital Threads standards across Boeing and the aerospace industry. Robert represents Boeing in the aerospace and defense industry standards bodies (AIA, ISO, SAE International, OMG Digital Twin Consortium, and the A&D PLM Action Group) to establish standards for the design and operational deployment of digital twin and digital thread. In prior assignments, Robert's design and technical expertise has been applied in the identification, validation, and integration of strategic Information Technology solutions for Boeing and the aerospace industry.

WHAT WE DO TODAY The Next 100 Years

COMMERCIAL AIRPLANES

A complete family of the world's most versatile commercial airplanes

The world's leader in delivering decisive mission advantage to its global customers through cuttingedge capabilities GLOBAL SERVICES

A dedicated services business focused on keeping the world's fleet flying safely, sustainably and efficiently

Protect, connect and explore our world and beyond

Boeing | RROI # 23-179797-ETT

Copyright © 2023 Boeing. All rights reserved

OUR VALUES

HOW WE OPERATE:

Start with engineering excellence

Be accountable — from beginning to end

Apply Lean principles – eliminate traveled work

Crush bureaucracy

Reward predictability and stability – everywhere in our business

HOW WE ACT:

Lead on safety, quality, integrity and sustainability

Foster a Just Culture grounded in humility, inclusion and transparency

Import best leadership practices

Earn stakeholder trust and preference

Respect one another and advance a global, diverse team

Innovate and operate to make the world better

OUR PRIORITIES

Live our values

Rebuild trust

Inculcate Safety and Quality Management Systems and Lean

Restore operational stability and business health

Invest in capabilities for Boeing's future

Attract, retain and develop the best global, diverse talent, intent on building careers in aerospace

We'll achieve our priorities by empowering our people

WHERE WE ARE Global Boeing

Products and services support to customers in more than 150 COUNTRIES

Manufacturing, service and technology partnerships with companies around the world

Contracts with more than **12,000** suppliers globally More than 158,000 BOEING EMPLOYEES

> **ທີ່ທີ່ກໍ່ຖືກໍ່ຖືກໍ່** across the United States

and in more than **70 COUNTRIES** Research, design and technology development centers and programs in multiple countries

> of commercial airplane revenue historically from customers outside the United States

Partnering worldwide for mutual growth and prosperity

Boeing | RROI # 23-179797-ETT

Approx.

80%

Copyright © 2023 Boeing. All rights reserved

This workshop presentation introduces and discusses opportunities with establishing Digital Thread standards. During the workshop discussion, questions for digital thread standards will be asked of participants:

Is there a need for Digital Thread Standards?

How should Digital Thread Standards be Organized?

When should Digital Thread Standards be utilized?

An Approach to Organizing and Evaluating Digital Thread Standards will be proposed and discussed. Lastly, we will capture questions you may have, provide answers and how to follow-up through participation with the SAE international G-31 Digital Communications committee.

Introduction

- The Digital Thread: Opportunity/Problem/Challenge
- First Question Is there a need for Digital Thread Standards?
- PLM Standards Digital Thread
- Second Question Organizing Digital Thread Standards?
- Standards Frameworks
- Third Question Utilization of Digital Thread Standards?
- An Approach to Organizing and Evaluating Digital Thread Standards
- Many Questions Few Answers

The Digital Thread: Opportunity/Problem/Challenge

- The Digital Thread catalyst of interest
- Resulting in a resurgent interest in data and information
- Who is responsible for managing data and information
 - Information Technology System Engineering?
- How do we share information between organizations between companies
- Are there standards that we can use to share/exchange data and information?

First Question – Digital Thread Standards

- Where do we find Digital Thread standards?
- Are you aware of any Digital Thread standards?

PLM Standards – Digital Thread

• Over 25 standards organizations are defining digital thread standards.

Standards Body Acronym	Organization Title	Standards Type [Artifacts, Models/Data, Tools/Methods]	Organization URL
AIAA	American Institute of Aeronautics and Astronautics	Artifacts	https://www.aiaa.org/
AIA	Aerospace Industries Association	Artifacts	https://www.aia- aerospace.org/about/
AFNeT	Association of Internet users and networked Society	Models/Data, Tools/Methods	https://www.afnet.fr/en /
AFNOR	Association Française de Normalisation	Artifacts, Tools/Methods	https://www.afnor.org/ en/
ANSI	American National Standards Institute	Models/Data	https://www.ansi.org/
ASD-STAN	AeroSpace and Defence Industries Association – Standards	Artifacts, Models/Data	https://asd-stan.org/
ASME	American Association of Mechanical Engineers	Tools/Methods	https://www.asme.org
АТА	ATA e-Business Program	Models/Data	https://ataebiz.org/

INCOSE	International Council on Systems Engineering	Tools/Methods	https://www.incose.org
ISO	International Organization for Standardization	Models/Data	https://www.iso.org/ho me.html
LOTAR	Long Term Archiving and Retrieval	Models/Data	https://lotar- international.org
Modelica	The Modelica Association	Models/Data, Tools/Methods	https://modelica.org/
NAFEMS	National Agency for Finite Element Methods and Standards	Models/Data, Tools/Methods	https://www.nafems.or g/
NIST	National Institute of Standards and Technology	Artifacts, Models/Data	https://www.nist.gov/
NQA-1	Nuclear Quality Assurance Certification Program		https://www.nqa.com/e n-us
OAGi	Open Applications Group Integration	Artifacts	https://www.oagi.org

Source: CIMdata A&D PLM AG Digital Twin/Thread Project

[https://www.cimdata.com/en/memberships/aerospace-defense-plm-action-group]

High Level View of Digital Thread Standards

- There is overlap between the data thread standards across various product lifecycle stages
- Potential opportunities to consolidate and streamline the data thread standards
- Increased need to monitor the level of digital thread standards being implemented across industries
- "Digital Thread Index" could be an effective way to measure the efficacy of Digital thread data standards

Source: SAE International G31 Digital Communications Committee

Slide 12

Second Question – Organizing Digital Thread Standards

• How should Digital Thread Standards be organized?

Standards Frameworks

Reference frameworks from industry

STEP Application Protocol (AP) Standards

Digital Twin Standards by Type (Wang et al. (2022)

Source: CIMdata A&D PLM AG Digital Twin/Thread Project

[https://www.cimdata.com/en/memberships/aerospace-defense-plm-action-group]

Boeing | RROI # 23-179797-ETT

Slide 14

Organizing Digital Thread Standards

		Supplier	OEM			Customer/User/Owner/Operator			
		Part/ Component/ Material	Requirements	Design	Engineer	Manufacture	Operation	Maintenance	Disposition
Business	Artifacts								
System	Models and Data								
Technical	Tools and Methods								

Digital Twin/Thread Definition Framework

- An organizing framework Product Lifecycle
- Align Standards to the product lifecycle

Source: CIMdata A&D PLM AG Digital Twin/Thread Project

^{Slide 15} [https://www.cimdata.com/en/memberships/aerospace-defense-plm-action-group]

Third Question – Utilization Digital Thread Standards

• How do we integrate digital thread standards?

Aerospace OEMs Standards Utilization

		Leading Organizations			
Domain	High Impact Standard	Solution Providers	Industrial Firms		
MBSE					
	FMI/FMU	Numerous M&S software providers	Widespread automotive use		
	SysML	Siemens PLM (LMS), NoMagic, PTC (ATEGO)	Large A&D firms (Boeing, Airbus etc.), NASA/JPL		
	MARTE	ignore	ignore		
	AADL	CMU/SEI	Boeing		
	MoSSEC	Dassault, Siemens PLM, MSC, Eurostep	Airbus		
	ISO 10303 Part 209	Jotne	LM Aerospace		
	ISO 10303 Part 233	Siemens PLM, IBM Rational	Large A&D firms (Boeing, Airbus etc.)		
MBD					
	ISO 10303 Part 210	No COTS implementation	None		
	ISO 10303 Part 238	No COTS implementation	GM, Boeing, Siemens		
	ISO 10303 Part 242 ed1 & ed2	PLM providers are working on ed2 implem	Large A&D firms (Boeing, Airbus etc.)		
Advanced Mfg & Robotics			CARACTER DATA CONTRACTOR CONTRACTOR		
	QIF	Siemens PLM	LM, Honeywell		
PLM Data					
	RegIF	Siemens PLM, PTC, IBM Rational	German Automotive firms		
	VDA 4968 VEC KBL	ignore	ignore		
	OSLC	IBM, Siemens PLM, PTC, Aras	Numerous		
	PRC/U3D	Siemens PLM	Numerous		
	ISO 140306 JT V1&V2	Siemens PLM	Numerous		
	ISO 10303 Part 239 (PLCS)	Eurostep, PDES Inc.	Large A&D firms (Boeing, Airbus etc.)		
PLM Process Domain					
	EN9300-120 ed1 (LOTAR)	No COTS implementation	Large A&D firms (Boeing, Airbus etc.)		

There are many data standards available in each product life cycle domain and many of them are being used by major OEMs and there is an opportunity to consolidate with an efficient and effective data standards

Source: SAE International G31 Digital Communications

Slide 17

SAE International G31 Digital Communications

A Proposed Approach to Organizing Digital Thread Standards Ravi Udali – Infosys Robert Rencher - Boeing

Digital Thread Standards - Monitoring

Slide 19

Source: SAE International G31 Digital Communications

Proposed Digital Thread Data Standards Monitoring parameters

Slide 20 Source: SAE International G31 Digital Communications Committee

Digital Thread Representation for PLM – Example of Linear sequential threading

Product Life Cycle Stages

Slide 21 Source: SAE International G31 Digital Communications Committee

Digital Thread Representation for Engineering – Example of Non Linear threading

Product Life Cycle Stages

Source: SAE International G31 Digital Communications Committee

Proposed Digital Thread Index Definition – Quantification of Effectiveness of Digital Thread

Source: SAE International G31 Digital Communications Committee

Digital Thread Index Definition – Factor B

Efficiency of data transfer from one lifecycle stage to other

=

of Digital thread breakage.. Primarily represents combination of speed and accuracy of data transfer

B _{Cumulative} = Function of (B1, B2, B3)

Slide 25 Source: SAE International G31 Digital Communications Committee

Digital Thread Index Definition – Factor C

Extent of coverage across entire product lifecycle

Source: SAE International G31 Digital Communications Committee

Digital Thread Index Definition - Composite factor

Digital thread index is

A Cumulative * B Cumulative * C Cumulative * D Cumulative

Source: SAE International G31 Digital Communications Committee

Wrap up

- The Digital Thread: Opportunity/Problem/Challenge
- First Question Digital Thread Standards?
- PLM Standards Digital Thread
- Second Question Organizing Digital Thread Standards?
- Standards Frameworks
- Third Question Utilization Digital Thread Standards?
- An Approach to Organizing Digital Thread Standards

Feedback and Questions?